Cargando…

Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection

A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS) structure with an immobilised enzyme (cyanidase) is realised at the laboratory scale. The immobilisation of the cyanidase is performed in two distinct steps: first, the covalent coupling of cyanidase to an...

Descripción completa

Detalles Bibliográficos
Autores principales: Turek, Monika, Ketterer, Lothar, Claβen, Melanie, Berndt, Heinz K., Elbers, Gereon, Krüger, Peter, Keusgen, Michael, Schöning, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814860/
Descripción
Sumario:A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS) structure with an immobilised enzyme (cyanidase) is realised at the laboratory scale. The immobilisation of the cyanidase is performed in two distinct steps: first, the covalent coupling of cyanidase to an N-hydroxysuccinimide- (NHS) activated Sepharose™ gel and then, the physical entrapment of NHS-activated Sepharose™ with the immobilised cyanidase in a dialysis membrane onto the EIS structure. The immobilisation of the cyanidase to the NHS-activated Sepharose™ is studied by means of gel electrophoresis measurements and investigations using an ammonia- (NH(3)) selective electrode. For the electrochemical characterisation of the cyanide biosensor, capacitance/voltage and constant capacitance measurements, respectively, have been carried out. A differential measurement procedure is presented to evaluate the cyanide concentration-dependent biosensor signals.