Cargando…

Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()

Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and co...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Yizhe, Wang, Qiuju, Li, Xiaochong, Zhang, Xiuying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814957/
https://www.ncbi.nlm.nih.gov/pubmed/24191237
http://dx.doi.org/10.1016/j.redox.2013.08.003
_version_ 1782289333912338432
author Cui, Yizhe
Wang, Qiuju
Li, Xiaochong
Zhang, Xiuying
author_facet Cui, Yizhe
Wang, Qiuju
Li, Xiaochong
Zhang, Xiuying
author_sort Cui, Yizhe
collection PubMed
description Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2(+/+) and Nrf2(−/−) mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2(−/−) mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2(−/−) mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2.
format Online
Article
Text
id pubmed-3814957
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-38149572013-11-04 Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation() Cui, Yizhe Wang, Qiuju Li, Xiaochong Zhang, Xiuying Redox Biol Research Paper Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2(+/+) and Nrf2(−/−) mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2(−/−) mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2(−/−) mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2. Elsevier 2013-08-24 /pmc/articles/PMC3814957/ /pubmed/24191237 http://dx.doi.org/10.1016/j.redox.2013.08.003 Text en © 2013 Published by Elsevier B.V. All rights reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Cui, Yizhe
Wang, Qiuju
Li, Xiaochong
Zhang, Xiuying
Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title_full Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title_fullStr Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title_full_unstemmed Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title_short Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
title_sort experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation()
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814957/
https://www.ncbi.nlm.nih.gov/pubmed/24191237
http://dx.doi.org/10.1016/j.redox.2013.08.003
work_keys_str_mv AT cuiyizhe experimentalnonalcoholicfattyliverdiseaseinmiceleadstocytochromep4502a5upregulationthroughnuclearfactorerythroid2like2translocation
AT wangqiuju experimentalnonalcoholicfattyliverdiseaseinmiceleadstocytochromep4502a5upregulationthroughnuclearfactorerythroid2like2translocation
AT lixiaochong experimentalnonalcoholicfattyliverdiseaseinmiceleadstocytochromep4502a5upregulationthroughnuclearfactorerythroid2like2translocation
AT zhangxiuying experimentalnonalcoholicfattyliverdiseaseinmiceleadstocytochromep4502a5upregulationthroughnuclearfactorerythroid2like2translocation