Cargando…
Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats
Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR’s plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815028/ https://www.ncbi.nlm.nih.gov/pubmed/24205048 http://dx.doi.org/10.1371/journal.pone.0077969 |
_version_ | 1782289348424630272 |
---|---|
author | Tan, Xiang-Shan Ma, Jing-Yi Feng, Ru Ma, Chao Chen, Wen-Jing Sun, Yu-Peng Fu, Jie Huang, Min He, Chi-Yu Shou, Jia-Wen He, Wen-Yi Wang, Yan Jiang, Jian-Dong |
author_facet | Tan, Xiang-Shan Ma, Jing-Yi Feng, Ru Ma, Chao Chen, Wen-Jing Sun, Yu-Peng Fu, Jie Huang, Min He, Chi-Yu Shou, Jia-Wen He, Wen-Yi Wang, Yan Jiang, Jian-Dong |
author_sort | Tan, Xiang-Shan |
collection | PubMed |
description | Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR’s plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n)-IT-TOF) as well as liquid chromatography that coupled with tandem mass spectrometry (LC-MS/MS) was used for the study of tissue distribution and pharmacokinetics of BBR in rats after oral administration (200 mg/kg). The results indicated that BBR was quickly distributed in the liver, kidneys, muscle, lungs, brain, heart, pancreas and fat in a descending order of its amount. The pharmacokinetic profile indicated that BBR’s level in most of studied tissues was higher (or much higher) than that in plasma 4 h after administration. BBR remained relatively stable in the tissues like liver, heart, brain, muscle, pancreas etc. Organ distribution of BBR’s metabolites was also investigated paralleled with that of BBR. Thalifendine (M1), berberrubine (M2) and jatrorrhizine (M4), which the metabolites with moderate bioactivity, were easily detected in organs like the liver and kidney. For instance, M1, M2 and M4 were the major metabolites in the liver, among which the percentage of M2 was up to 65.1%; the level of AUC ((0-t)) (area under the concentration-time curve) for BBR or the metabolites in the liver was 10-fold or 30-fold higher than that in plasma, respectively. In summary, the organ concentration of BBR (as well as its bioactive metabolites) was higher than its concentration in the blood after oral administration. It might explain BBR’s pharmacological effects on human diseases in clinic. |
format | Online Article Text |
id | pubmed-3815028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38150282013-11-07 Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats Tan, Xiang-Shan Ma, Jing-Yi Feng, Ru Ma, Chao Chen, Wen-Jing Sun, Yu-Peng Fu, Jie Huang, Min He, Chi-Yu Shou, Jia-Wen He, Wen-Yi Wang, Yan Jiang, Jian-Dong PLoS One Research Article Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR’s plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n)-IT-TOF) as well as liquid chromatography that coupled with tandem mass spectrometry (LC-MS/MS) was used for the study of tissue distribution and pharmacokinetics of BBR in rats after oral administration (200 mg/kg). The results indicated that BBR was quickly distributed in the liver, kidneys, muscle, lungs, brain, heart, pancreas and fat in a descending order of its amount. The pharmacokinetic profile indicated that BBR’s level in most of studied tissues was higher (or much higher) than that in plasma 4 h after administration. BBR remained relatively stable in the tissues like liver, heart, brain, muscle, pancreas etc. Organ distribution of BBR’s metabolites was also investigated paralleled with that of BBR. Thalifendine (M1), berberrubine (M2) and jatrorrhizine (M4), which the metabolites with moderate bioactivity, were easily detected in organs like the liver and kidney. For instance, M1, M2 and M4 were the major metabolites in the liver, among which the percentage of M2 was up to 65.1%; the level of AUC ((0-t)) (area under the concentration-time curve) for BBR or the metabolites in the liver was 10-fold or 30-fold higher than that in plasma, respectively. In summary, the organ concentration of BBR (as well as its bioactive metabolites) was higher than its concentration in the blood after oral administration. It might explain BBR’s pharmacological effects on human diseases in clinic. Public Library of Science 2013-10-31 /pmc/articles/PMC3815028/ /pubmed/24205048 http://dx.doi.org/10.1371/journal.pone.0077969 Text en © 2013 Tan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tan, Xiang-Shan Ma, Jing-Yi Feng, Ru Ma, Chao Chen, Wen-Jing Sun, Yu-Peng Fu, Jie Huang, Min He, Chi-Yu Shou, Jia-Wen He, Wen-Yi Wang, Yan Jiang, Jian-Dong Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title | Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title_full | Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title_fullStr | Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title_full_unstemmed | Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title_short | Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats |
title_sort | tissue distribution of berberine and its metabolites after oral administration in rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815028/ https://www.ncbi.nlm.nih.gov/pubmed/24205048 http://dx.doi.org/10.1371/journal.pone.0077969 |
work_keys_str_mv | AT tanxiangshan tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT majingyi tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT fengru tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT machao tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT chenwenjing tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT sunyupeng tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT fujie tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT huangmin tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT hechiyu tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT shoujiawen tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT hewenyi tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT wangyan tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats AT jiangjiandong tissuedistributionofberberineanditsmetabolitesafteroraladministrationinrats |