Cargando…
Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems
The two‐component system TmoS/TmoT controls the expression of the toluene‐4‐monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of P(tmoX) activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108 kDa protein composed of seven diff...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815326/ https://www.ncbi.nlm.nih.gov/pubmed/22212183 http://dx.doi.org/10.1111/j.1751-7915.2011.00322.x |
_version_ | 1782289405640179712 |
---|---|
author | Silva‐Jiménez, Hortencia García‐Fontana, Cristina Cadirci, Bilge Hilal Ramos‐González, María Isabel Ramos, Juan Luis Krell, Tino |
author_facet | Silva‐Jiménez, Hortencia García‐Fontana, Cristina Cadirci, Bilge Hilal Ramos‐González, María Isabel Ramos, Juan Luis Krell, Tino |
author_sort | Silva‐Jiménez, Hortencia |
collection | PubMed |
description | The two‐component system TmoS/TmoT controls the expression of the toluene‐4‐monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of P(tmoX) activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108 kDa protein composed of seven different domains. Using isothermal titration calorimetry we show that purified TmoS binds a wide range of aromatic compounds with high affinities. Tightest ligand binding was observed for toluene (K(D) = 150 nM), which corresponds to the highest affinity measured between an effector and a sensor kinase. Other compounds with affinities in the nanomolar range include benzene, the 3 xylene isomers, styrene, nitrobenzene or p‐chlorotoluene. We demonstrate that only part of the ligands that bind to TmoS increase protein autophosphorylation in vitro and consequently pathway expression in vivo. These compounds are referred to as agonists. Other TmoS ligands, termed antagonists, failed to increase TmoS autophosphorylation, which resulted in their incapacity to stimulate gene expression in vivo. We also show that TmoS saturated with different agonists differs in their autokinase activities. The effector screening of gene expression showed that promoter activity of P(tmoX) and P(todX) (controlled by the TodS/TodT system) is mediated by the same set of 22 compounds. The common structural feature of these compounds is the presence of a single aromatic ring. Among these ligands, toluene was the most potent inducer of both promoter activities. Information on the TmoS/TmoT and TodS/TodT system combined with a sequence analysis of family members permits to identify distinct features that define this protein family. |
format | Online Article Text |
id | pubmed-3815326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38153262014-02-12 Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems Silva‐Jiménez, Hortencia García‐Fontana, Cristina Cadirci, Bilge Hilal Ramos‐González, María Isabel Ramos, Juan Luis Krell, Tino Microb Biotechnol Research Articles The two‐component system TmoS/TmoT controls the expression of the toluene‐4‐monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of P(tmoX) activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108 kDa protein composed of seven different domains. Using isothermal titration calorimetry we show that purified TmoS binds a wide range of aromatic compounds with high affinities. Tightest ligand binding was observed for toluene (K(D) = 150 nM), which corresponds to the highest affinity measured between an effector and a sensor kinase. Other compounds with affinities in the nanomolar range include benzene, the 3 xylene isomers, styrene, nitrobenzene or p‐chlorotoluene. We demonstrate that only part of the ligands that bind to TmoS increase protein autophosphorylation in vitro and consequently pathway expression in vivo. These compounds are referred to as agonists. Other TmoS ligands, termed antagonists, failed to increase TmoS autophosphorylation, which resulted in their incapacity to stimulate gene expression in vivo. We also show that TmoS saturated with different agonists differs in their autokinase activities. The effector screening of gene expression showed that promoter activity of P(tmoX) and P(todX) (controlled by the TodS/TodT system) is mediated by the same set of 22 compounds. The common structural feature of these compounds is the presence of a single aromatic ring. Among these ligands, toluene was the most potent inducer of both promoter activities. Information on the TmoS/TmoT and TodS/TodT system combined with a sequence analysis of family members permits to identify distinct features that define this protein family. Blackwell Publishing Ltd 2012-07 2012-06-07 /pmc/articles/PMC3815326/ /pubmed/22212183 http://dx.doi.org/10.1111/j.1751-7915.2011.00322.x Text en Journal compilation © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd |
spellingShingle | Research Articles Silva‐Jiménez, Hortencia García‐Fontana, Cristina Cadirci, Bilge Hilal Ramos‐González, María Isabel Ramos, Juan Luis Krell, Tino Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title | Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title_full | Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title_fullStr | Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title_full_unstemmed | Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title_short | Study of the TmoS/TmoT two‐component system: towards the functional characterization of the family of TodS/TodT like systems |
title_sort | study of the tmos/tmot two‐component system: towards the functional characterization of the family of tods/todt like systems |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815326/ https://www.ncbi.nlm.nih.gov/pubmed/22212183 http://dx.doi.org/10.1111/j.1751-7915.2011.00322.x |
work_keys_str_mv | AT silvajimenezhortencia studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems AT garciafontanacristina studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems AT cadircibilgehilal studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems AT ramosgonzalezmariaisabel studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems AT ramosjuanluis studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems AT krelltino studyofthetmostmottwocomponentsystemtowardsthefunctionalcharacterizationofthefamilyoftodstodtlikesystems |