Cargando…
Advances in Campylobacter biology and implications for biotechnological applications
Campylobacter jejuni is a major foodborne pathogen of animal origin and a leading cause of bacterial gastroenteritis in humans. During the past decade, especially since the publication of the first C. jejuni genome sequence, major advances have been made in understanding the pathobiology and physiol...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815368/ https://www.ncbi.nlm.nih.gov/pubmed/21255325 http://dx.doi.org/10.1111/j.1751-7915.2009.00118.x |
_version_ | 1782289414615990272 |
---|---|
author | Jeon, Byeonghwa Muraoka, Wayne T. Zhang, Qijing |
author_facet | Jeon, Byeonghwa Muraoka, Wayne T. Zhang, Qijing |
author_sort | Jeon, Byeonghwa |
collection | PubMed |
description | Campylobacter jejuni is a major foodborne pathogen of animal origin and a leading cause of bacterial gastroenteritis in humans. During the past decade, especially since the publication of the first C. jejuni genome sequence, major advances have been made in understanding the pathobiology and physiology of this organism. It is apparent that C. jejuni utilizes sophisticated mechanisms for effective colonization of the intestinal tracts in various animal species. Although Campylobacter is fragile in the environment and requires fastidious growth conditions, it exhibits great flexibility in the adaptation to various habitats including the gastrointestinal tract. This high adaptability is attributable to its genetically, metabolically and phenotypically diverse population structure and its ability to change in response to various challenges. Unlike other enteric pathogens, such as Escherichia coli and Salmonella, Campylobacter is unable to utilize exogenous glucose and mainly depends on the catabolism of amino acids as a carbon source. Campylobacter proves highly mutable in response to antibiotic treatments and possesses eukaryote‐like dual protein glycosylation systems, which modify flagella and other surface proteins with specific sugar structures. In this review we will summarize the distinct biological traits of Campylobacter and discuss the potential biotechnological approaches that can be developed to control this enteric pathogen. |
format | Online Article Text |
id | pubmed-3815368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38153682014-02-12 Advances in Campylobacter biology and implications for biotechnological applications Jeon, Byeonghwa Muraoka, Wayne T. Zhang, Qijing Microb Biotechnol Review Article Campylobacter jejuni is a major foodborne pathogen of animal origin and a leading cause of bacterial gastroenteritis in humans. During the past decade, especially since the publication of the first C. jejuni genome sequence, major advances have been made in understanding the pathobiology and physiology of this organism. It is apparent that C. jejuni utilizes sophisticated mechanisms for effective colonization of the intestinal tracts in various animal species. Although Campylobacter is fragile in the environment and requires fastidious growth conditions, it exhibits great flexibility in the adaptation to various habitats including the gastrointestinal tract. This high adaptability is attributable to its genetically, metabolically and phenotypically diverse population structure and its ability to change in response to various challenges. Unlike other enteric pathogens, such as Escherichia coli and Salmonella, Campylobacter is unable to utilize exogenous glucose and mainly depends on the catabolism of amino acids as a carbon source. Campylobacter proves highly mutable in response to antibiotic treatments and possesses eukaryote‐like dual protein glycosylation systems, which modify flagella and other surface proteins with specific sugar structures. In this review we will summarize the distinct biological traits of Campylobacter and discuss the potential biotechnological approaches that can be developed to control this enteric pathogen. Blackwell Publishing Ltd 2010-05 2010-04-20 /pmc/articles/PMC3815368/ /pubmed/21255325 http://dx.doi.org/10.1111/j.1751-7915.2009.00118.x Text en Copyright© 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd |
spellingShingle | Review Article Jeon, Byeonghwa Muraoka, Wayne T. Zhang, Qijing Advances in Campylobacter biology and implications for biotechnological applications |
title | Advances in Campylobacter biology and implications for biotechnological applications |
title_full | Advances in Campylobacter biology and implications for biotechnological applications |
title_fullStr | Advances in Campylobacter biology and implications for biotechnological applications |
title_full_unstemmed | Advances in Campylobacter biology and implications for biotechnological applications |
title_short | Advances in Campylobacter biology and implications for biotechnological applications |
title_sort | advances in campylobacter biology and implications for biotechnological applications |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815368/ https://www.ncbi.nlm.nih.gov/pubmed/21255325 http://dx.doi.org/10.1111/j.1751-7915.2009.00118.x |
work_keys_str_mv | AT jeonbyeonghwa advancesincampylobacterbiologyandimplicationsforbiotechnologicalapplications AT muraokawaynet advancesincampylobacterbiologyandimplicationsforbiotechnologicalapplications AT zhangqijing advancesincampylobacterbiologyandimplicationsforbiotechnologicalapplications |