Cargando…

CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base

The transition zone (TZ) is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules (MTs) are heavily cross-linked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Won-Jing, Tay, Hwee Goon, Soni, Rajesh, Perumal, Geoffrey S., Goll, Mary G., Macaluso, Frank P., Asara, John M., Amack, Jeffrey D., Tsou, Meng-Fu Bryan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815462/
https://www.ncbi.nlm.nih.gov/pubmed/23644468
http://dx.doi.org/10.1038/ncb2739
Descripción
Sumario:The transition zone (TZ) is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules (MTs) are heavily cross-linked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have been found to associate with the TZ, but factors that directly recognize axonemal MTs to specify TZ assembly at the cilia base remain unclear. Here, through quantitative centrosome proteomics, we identified an axoneme-associated protein, CEP162, tethered specifically at centriole distal ends to promote TZ assembly. CEP162 interacts with core TZ components, and mediates their association with MTs. Loss of CEP162 arrests ciliogenesis at the stage of TZ assembly. Abolishing its centriolar tethering, however, allows CEP162 to stay on the growing end of the axoneme, and ectopically assemble TZ components at cilia tips. This generates extra-long cilia with strikingly swollen tips that actively release ciliary contents into the extracellular environment. CEP162 is thus an axoneme-recognition protein “pre-tethered” at centriole distal ends prior to ciliogenesis to promote and restrict TZ formation specifically at the cilia base.