Cargando…
Microbial production of lactate-containing polyesters
Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815930/ https://www.ncbi.nlm.nih.gov/pubmed/23718266 http://dx.doi.org/10.1111/1751-7915.12066 |
_version_ | 1782289471037767680 |
---|---|
author | Yang, Jung Eun Choi, So Young Shin, Jae Ho Park, Si Jae Lee, Sang Yup |
author_facet | Yang, Jung Eun Choi, So Young Shin, Jae Ho Park, Si Jae Lee, Sang Yup |
author_sort | Yang, Jung Eun |
collection | PubMed |
description | Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. |
format | Online Article Text |
id | pubmed-3815930 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38159302014-02-12 Microbial production of lactate-containing polyesters Yang, Jung Eun Choi, So Young Shin, Jae Ho Park, Si Jae Lee, Sang Yup Microb Biotechnol Minireviews Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. Blackwell Publishing Ltd 2013-11 2013-05-29 /pmc/articles/PMC3815930/ /pubmed/23718266 http://dx.doi.org/10.1111/1751-7915.12066 Text en Journal compilation © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Minireviews Yang, Jung Eun Choi, So Young Shin, Jae Ho Park, Si Jae Lee, Sang Yup Microbial production of lactate-containing polyesters |
title | Microbial production of lactate-containing polyesters |
title_full | Microbial production of lactate-containing polyesters |
title_fullStr | Microbial production of lactate-containing polyesters |
title_full_unstemmed | Microbial production of lactate-containing polyesters |
title_short | Microbial production of lactate-containing polyesters |
title_sort | microbial production of lactate-containing polyesters |
topic | Minireviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815930/ https://www.ncbi.nlm.nih.gov/pubmed/23718266 http://dx.doi.org/10.1111/1751-7915.12066 |
work_keys_str_mv | AT yangjungeun microbialproductionoflactatecontainingpolyesters AT choisoyoung microbialproductionoflactatecontainingpolyesters AT shinjaeho microbialproductionoflactatecontainingpolyesters AT parksijae microbialproductionoflactatecontainingpolyesters AT leesangyup microbialproductionoflactatecontainingpolyesters |