Cargando…
ϵ-Henig Saddle Points and Duality of Set-Valued Optimization Problems in Real Linear Spaces
We study ϵ-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization of ϵ-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816079/ https://www.ncbi.nlm.nih.gov/pubmed/24223029 http://dx.doi.org/10.1155/2013/403642 |
Sumario: | We study ϵ-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization of ϵ-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness of set-valued maps, the relationship between the ϵ-Henig saddle point of the Lagrangian set-valued map and the ϵ-Henig properly efficient element of the set-valued optimization problem is presented. Finally, some duality theorems are given. |
---|