Cargando…
ϵ-Henig Saddle Points and Duality of Set-Valued Optimization Problems in Real Linear Spaces
We study ϵ-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization of ϵ-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness...
Autor principal: | Zhou, Zhi-Ang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816079/ https://www.ncbi.nlm.nih.gov/pubmed/24223029 http://dx.doi.org/10.1155/2013/403642 |
Ejemplares similares
-
Saddle-point problems and their iterative solution
por: Rozložník, Miroslav
Publicado: (2018) -
Refined saddle-point preconditioners for discretized Stokes problems
por: Pearson, John W., et al.
Publicado: (2017) -
Large-N saddle points
por: Aragão de Carvalho, C, et al.
Publicado: (1980) -
Geometry of Banach spaces, duality mappings and nonlinear problems
por: Cioranescu, Ioana
Publicado: (1990) -
Topology and saddle points in field theories
por: Forgács, Péter, et al.
Publicado: (1984)