Cargando…

Prohibitin is associated with antioxidative protection in hypoxia/reoxygenation-induced renal tubular epithelial cell injury

Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increas...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Tian-Biao, Qin, Yuan-Han, Lei, Feng-Ying, Huang, Wei-Fang, Drummen, Gregor P. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816288/
https://www.ncbi.nlm.nih.gov/pubmed/24185039
http://dx.doi.org/10.1038/srep03123
Descripción
Sumario:Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. We recently demonstrated that prohibitin downregulation results in increased renal interstitial fibrosis. Here we investigated the role of oxidative stress and prohibitin expression in a hypoxia/reoxygenation injury system in renal tubular epithelial cells with lentivirus-based delivery vectors to knockdown or overexpress prohibitin. Our results show that increased prohibitin expression was negatively correlated with reactive oxygen species, malon dialdehyde, transforming-growth-factor-β1, collagen-IV, fibronectin, and apoptosis (r = −0.895, −0.764, −0.798, −0.826, −0.817, −0.735; each P < 0.01), but positively correlated with superoxide dismutase, glutathione and mitochondrial membrane potential (r = 0.807, 0.815, 0.739; each P < 0.01). We postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.