Cargando…

Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization

Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Imakaev, Maxim, Fudenberg, Geoffrey, McCord, Rachel Patton, Naumova, Natalia, Goloborodko, Anton, Lajoie, Bryan R., Dekker, Job, Mirny, Leonid A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816492/
https://www.ncbi.nlm.nih.gov/pubmed/22941365
http://dx.doi.org/10.1038/nmeth.2148
Descripción
Sumario:Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate ICE (Iterative Correction and Eigenvector decomposition) on published Hi-C data, and demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes.