Cargando…
Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization
Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method fo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816492/ https://www.ncbi.nlm.nih.gov/pubmed/22941365 http://dx.doi.org/10.1038/nmeth.2148 |
_version_ | 1782477950597201920 |
---|---|
author | Imakaev, Maxim Fudenberg, Geoffrey McCord, Rachel Patton Naumova, Natalia Goloborodko, Anton Lajoie, Bryan R. Dekker, Job Mirny, Leonid A |
author_facet | Imakaev, Maxim Fudenberg, Geoffrey McCord, Rachel Patton Naumova, Natalia Goloborodko, Anton Lajoie, Bryan R. Dekker, Job Mirny, Leonid A |
author_sort | Imakaev, Maxim |
collection | PubMed |
description | Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate ICE (Iterative Correction and Eigenvector decomposition) on published Hi-C data, and demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes. |
format | Online Article Text |
id | pubmed-3816492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
record_format | MEDLINE/PubMed |
spelling | pubmed-38164922013-11-04 Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization Imakaev, Maxim Fudenberg, Geoffrey McCord, Rachel Patton Naumova, Natalia Goloborodko, Anton Lajoie, Bryan R. Dekker, Job Mirny, Leonid A Nat Methods Article Extracting biologically meaningful information from chromosomal interactions obtained with genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a data-driven method for iterative correction of biases, yielding genome-wide maps of relative contact probabilities. We validate ICE (Iterative Correction and Eigenvector decomposition) on published Hi-C data, and demonstrate that eigenvector decomposition of the obtained maps provides insights into local chromatin states, global patterns of chromosomal interactions, and the conserved organization of human and mouse chromosomes. 2012-09-02 2012-10 /pmc/articles/PMC3816492/ /pubmed/22941365 http://dx.doi.org/10.1038/nmeth.2148 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Imakaev, Maxim Fudenberg, Geoffrey McCord, Rachel Patton Naumova, Natalia Goloborodko, Anton Lajoie, Bryan R. Dekker, Job Mirny, Leonid A Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title | Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title_full | Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title_fullStr | Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title_full_unstemmed | Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title_short | Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization |
title_sort | iterative correction of hi-c data reveals hallmarks of chromosome organization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816492/ https://www.ncbi.nlm.nih.gov/pubmed/22941365 http://dx.doi.org/10.1038/nmeth.2148 |
work_keys_str_mv | AT imakaevmaxim iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT fudenberggeoffrey iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT mccordrachelpatton iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT naumovanatalia iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT goloborodkoanton iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT lajoiebryanr iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT dekkerjob iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization AT mirnyleonida iterativecorrectionofhicdatarevealshallmarksofchromosomeorganization |