Cargando…
The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity
Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adeno...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817140/ https://www.ncbi.nlm.nih.gov/pubmed/24224063 http://dx.doi.org/10.1371/journal.pone.0080967 |
_version_ | 1782478025656369152 |
---|---|
author | Sarrade-Loucheur, Arthur Xu, Shuang-yong Chan, Siu-Hong |
author_facet | Sarrade-Loucheur, Arthur Xu, Shuang-yong Chan, Siu-Hong |
author_sort | Sarrade-Loucheur, Arthur |
collection | PubMed |
description | Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the V(max) of the RM.BpuSI cleavage activity with a proportional change in K(m), suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+), SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+), substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+) and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI. |
format | Online Article Text |
id | pubmed-3817140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38171402013-11-09 The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity Sarrade-Loucheur, Arthur Xu, Shuang-yong Chan, Siu-Hong PLoS One Research Article Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the V(max) of the RM.BpuSI cleavage activity with a proportional change in K(m), suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+), SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+), substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+) and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI. Public Library of Science 2013-11-04 /pmc/articles/PMC3817140/ /pubmed/24224063 http://dx.doi.org/10.1371/journal.pone.0080967 Text en © 2013 Sarrade-Loucheur et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sarrade-Loucheur, Arthur Xu, Shuang-yong Chan, Siu-Hong The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title | The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title_full | The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title_fullStr | The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title_full_unstemmed | The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title_short | The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity |
title_sort | role of the methyltransferase domain of bifunctional restriction enzyme rm.bpusi in cleavage activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817140/ https://www.ncbi.nlm.nih.gov/pubmed/24224063 http://dx.doi.org/10.1371/journal.pone.0080967 |
work_keys_str_mv | AT sarradeloucheurarthur theroleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity AT xushuangyong theroleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity AT chansiuhong theroleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity AT sarradeloucheurarthur roleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity AT xushuangyong roleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity AT chansiuhong roleofthemethyltransferasedomainofbifunctionalrestrictionenzymermbpusiincleavageactivity |