Cargando…
Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay
The exon junction complex (EJC) participates in the regulation of many post-transcriptional steps of gene expression. EJCs are deposited on messenger RNAs (mRNAs) during splicing and their core consists of eIF4A3, MLN51, Y14, and MAGOH. Here, we show that two genes encoding MAGOH paralogs (referred...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817150/ https://www.ncbi.nlm.nih.gov/pubmed/23917022 http://dx.doi.org/10.4161/rna.25827 |
_version_ | 1782478026757373952 |
---|---|
author | Singh, Kusum K Wachsmuth, Laurens Kulozik, Andreas E Gehring, Niels H |
author_facet | Singh, Kusum K Wachsmuth, Laurens Kulozik, Andreas E Gehring, Niels H |
author_sort | Singh, Kusum K |
collection | PubMed |
description | The exon junction complex (EJC) participates in the regulation of many post-transcriptional steps of gene expression. EJCs are deposited on messenger RNAs (mRNAs) during splicing and their core consists of eIF4A3, MLN51, Y14, and MAGOH. Here, we show that two genes encoding MAGOH paralogs (referred to as MAGOH and MAGOHB) are expressed in mammals. In macrophages, the expression of MAGOHB, but not MAGOH mRNA, increases rapidly after LPS stimulation. Both MAGOH proteins interact with other EJC components, incorporate into mRNA-bound EJCs, and activate nonsense-mediated decay. Furthermore, the simultaneous depletion of MAGOH and MAGOHB, but not individual depletions, impair nonsense-mediated decay in human cells. Hence, our results establish that the core composition of mammalian EJCs is more complex than previously recognized. |
format | Online Article Text |
id | pubmed-3817150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-38171502013-12-18 Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay Singh, Kusum K Wachsmuth, Laurens Kulozik, Andreas E Gehring, Niels H RNA Biol Brief Communication The exon junction complex (EJC) participates in the regulation of many post-transcriptional steps of gene expression. EJCs are deposited on messenger RNAs (mRNAs) during splicing and their core consists of eIF4A3, MLN51, Y14, and MAGOH. Here, we show that two genes encoding MAGOH paralogs (referred to as MAGOH and MAGOHB) are expressed in mammals. In macrophages, the expression of MAGOHB, but not MAGOH mRNA, increases rapidly after LPS stimulation. Both MAGOH proteins interact with other EJC components, incorporate into mRNA-bound EJCs, and activate nonsense-mediated decay. Furthermore, the simultaneous depletion of MAGOH and MAGOHB, but not individual depletions, impair nonsense-mediated decay in human cells. Hence, our results establish that the core composition of mammalian EJCs is more complex than previously recognized. Landes Bioscience 2013-08-01 2013-07-23 /pmc/articles/PMC3817150/ /pubmed/23917022 http://dx.doi.org/10.4161/rna.25827 Text en Copyright © 2013 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Brief Communication Singh, Kusum K Wachsmuth, Laurens Kulozik, Andreas E Gehring, Niels H Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title | Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title_full | Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title_fullStr | Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title_full_unstemmed | Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title_short | Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay |
title_sort | two mammalian magoh genes contribute to exon junction complex composition and nonsense-mediated decay |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817150/ https://www.ncbi.nlm.nih.gov/pubmed/23917022 http://dx.doi.org/10.4161/rna.25827 |
work_keys_str_mv | AT singhkusumk twomammalianmagohgenescontributetoexonjunctioncomplexcompositionandnonsensemediateddecay AT wachsmuthlaurens twomammalianmagohgenescontributetoexonjunctioncomplexcompositionandnonsensemediateddecay AT kulozikandrease twomammalianmagohgenescontributetoexonjunctioncomplexcompositionandnonsensemediateddecay AT gehringnielsh twomammalianmagohgenescontributetoexonjunctioncomplexcompositionandnonsensemediateddecay |