Cargando…
Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs
Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repress...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817159/ https://www.ncbi.nlm.nih.gov/pubmed/23863322 http://dx.doi.org/10.4161/rna.25555 |
_version_ | 1782478027665440768 |
---|---|
author | McCue, Andrea D Nuthikattu, Saivageethi Slotkin, R Keith |
author_facet | McCue, Andrea D Nuthikattu, Saivageethi Slotkin, R Keith |
author_sort | McCue, Andrea D |
collection | PubMed |
description | Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repression of TEs is lost, TEs become transcriptionally active, and the host cell acts to repress mutagenic transposition by degrading TE mRNAs into siRNAs. In this study, we have performed a genome-wide analysis in the model plant Arabidopsis thaliana and found that TE siRNA-based regulation of genic mRNAs is more pervasive than the two formerly characterized proof-of-principle examples. We identified 27 candidate genic mRNAs that do not contain a TE fragment but are regulated through partial complementarity by the accumulation of TE siRNAs and are therefore influenced by TE epigenetic activation. We have experimentally confirmed several gene targets and demonstrated that they respond to the accumulation of specific 21 nucleotide TE siRNAs that are incorporated into the Arabidopsis Argonaute1 protein. Additionally, we found that one TE siRNA specifically targets and inhibits the formation of a host protein that acts to repress TE activity, suggesting that TEs harbor and potentially evolutionarily select short sequences to act as suppressors of host TE repression. |
format | Online Article Text |
id | pubmed-3817159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Landes Bioscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-38171592013-12-18 Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs McCue, Andrea D Nuthikattu, Saivageethi Slotkin, R Keith RNA Biol Research Paper Transposable elements (TEs) are known to influence the regulation of neighboring genes through a variety of mechanisms. Additionally, it was recently discovered that TEs can regulate non-neighboring genes through the trans-acting nature of small interfering RNAs (siRNAs). When the epigenetic repression of TEs is lost, TEs become transcriptionally active, and the host cell acts to repress mutagenic transposition by degrading TE mRNAs into siRNAs. In this study, we have performed a genome-wide analysis in the model plant Arabidopsis thaliana and found that TE siRNA-based regulation of genic mRNAs is more pervasive than the two formerly characterized proof-of-principle examples. We identified 27 candidate genic mRNAs that do not contain a TE fragment but are regulated through partial complementarity by the accumulation of TE siRNAs and are therefore influenced by TE epigenetic activation. We have experimentally confirmed several gene targets and demonstrated that they respond to the accumulation of specific 21 nucleotide TE siRNAs that are incorporated into the Arabidopsis Argonaute1 protein. Additionally, we found that one TE siRNA specifically targets and inhibits the formation of a host protein that acts to repress TE activity, suggesting that TEs harbor and potentially evolutionarily select short sequences to act as suppressors of host TE repression. Landes Bioscience 2013-08-01 2013-07-02 /pmc/articles/PMC3817159/ /pubmed/23863322 http://dx.doi.org/10.4161/rna.25555 Text en Copyright © 2013 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Research Paper McCue, Andrea D Nuthikattu, Saivageethi Slotkin, R Keith Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title | Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title_full | Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title_fullStr | Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title_full_unstemmed | Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title_short | Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs |
title_sort | genome-wide identification of genes regulated in trans by transposable element small interfering rnas |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817159/ https://www.ncbi.nlm.nih.gov/pubmed/23863322 http://dx.doi.org/10.4161/rna.25555 |
work_keys_str_mv | AT mccueandread genomewideidentificationofgenesregulatedintransbytransposableelementsmallinterferingrnas AT nuthikattusaivageethi genomewideidentificationofgenesregulatedintransbytransposableelementsmallinterferingrnas AT slotkinrkeith genomewideidentificationofgenesregulatedintransbytransposableelementsmallinterferingrnas |