Cargando…

Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance

BACKGROUND: Cyclin-dependent kinases (CDKs) control cell cycle progression, RNA transcription and apoptosis, making them attractive targets for anticancer drug development. Unfortunately, CDK inhibitors developed to date have demonstrated variable efficacy. METHODS: We generated drug-resistant cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaliszczak, M, Patel, H, Kroll, S H B, Carroll, L, Smith, G, Delaney, S, Heathcote, D A, Bondke, A, Fuchter, M J, Coombes, R C, Barrett, A G M, Ali, S, Aboagye, E O
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817326/
https://www.ncbi.nlm.nih.gov/pubmed/24071597
http://dx.doi.org/10.1038/bjc.2013.584
_version_ 1782478056359723008
author Kaliszczak, M
Patel, H
Kroll, S H B
Carroll, L
Smith, G
Delaney, S
Heathcote, D A
Bondke, A
Fuchter, M J
Coombes, R C
Barrett, A G M
Ali, S
Aboagye, E O
author_facet Kaliszczak, M
Patel, H
Kroll, S H B
Carroll, L
Smith, G
Delaney, S
Heathcote, D A
Bondke, A
Fuchter, M J
Coombes, R C
Barrett, A G M
Ali, S
Aboagye, E O
author_sort Kaliszczak, M
collection PubMed
description BACKGROUND: Cyclin-dependent kinases (CDKs) control cell cycle progression, RNA transcription and apoptosis, making them attractive targets for anticancer drug development. Unfortunately, CDK inhibitors developed to date have demonstrated variable efficacy. METHODS: We generated drug-resistant cells by continuous low-dose exposure to a model pyrazolo[1,5-a]pyrimidine CDK inhibitor and investigated potential structural alterations for optimal efficacy. RESULTS: We identified induction of the ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, in resistant cells. Assessment of features involved in the ABC transporter substrate specificity from a compound library revealed high polar surface area (>100 Å(2)) as a key determinant of transporter interaction. We developed ICEC-0782 that preferentially inhibited CDK2, CDK7 and CDK9 in the nanomolar range. The compound inhibited phosphorylation of CDK substrates and downregulated the short-lived proteins, Mcl-1 and cyclin D1. ICEC-0782 induced G2/M arrest and apoptosis. The permeability and cytotoxicity of ICEC-0782 were unaffected by ABC transporter expression. Following daily oral dosing, the compound inhibited growth of human colon HCT-116 and human breast MCF7 tumour xenografts in vivo by 84% and 94%, respectively. CONCLUSION: We identified a promising pyrazolo[1,5-a]pyrimidine compound devoid of ABC transporter interaction, highly suitable for further preclinical and clinical evaluation for the treatment of cancer.
format Online
Article
Text
id pubmed-3817326
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38173262014-10-29 Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance Kaliszczak, M Patel, H Kroll, S H B Carroll, L Smith, G Delaney, S Heathcote, D A Bondke, A Fuchter, M J Coombes, R C Barrett, A G M Ali, S Aboagye, E O Br J Cancer Translational Therapeutics BACKGROUND: Cyclin-dependent kinases (CDKs) control cell cycle progression, RNA transcription and apoptosis, making them attractive targets for anticancer drug development. Unfortunately, CDK inhibitors developed to date have demonstrated variable efficacy. METHODS: We generated drug-resistant cells by continuous low-dose exposure to a model pyrazolo[1,5-a]pyrimidine CDK inhibitor and investigated potential structural alterations for optimal efficacy. RESULTS: We identified induction of the ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, in resistant cells. Assessment of features involved in the ABC transporter substrate specificity from a compound library revealed high polar surface area (>100 Å(2)) as a key determinant of transporter interaction. We developed ICEC-0782 that preferentially inhibited CDK2, CDK7 and CDK9 in the nanomolar range. The compound inhibited phosphorylation of CDK substrates and downregulated the short-lived proteins, Mcl-1 and cyclin D1. ICEC-0782 induced G2/M arrest and apoptosis. The permeability and cytotoxicity of ICEC-0782 were unaffected by ABC transporter expression. Following daily oral dosing, the compound inhibited growth of human colon HCT-116 and human breast MCF7 tumour xenografts in vivo by 84% and 94%, respectively. CONCLUSION: We identified a promising pyrazolo[1,5-a]pyrimidine compound devoid of ABC transporter interaction, highly suitable for further preclinical and clinical evaluation for the treatment of cancer. Nature Publishing Group 2013-10-29 2013-09-26 /pmc/articles/PMC3817326/ /pubmed/24071597 http://dx.doi.org/10.1038/bjc.2013.584 Text en Copyright © 2013 Cancer Research UK http://creativecommons.org/licenses/by-nc-sa/3.0/ From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Translational Therapeutics
Kaliszczak, M
Patel, H
Kroll, S H B
Carroll, L
Smith, G
Delaney, S
Heathcote, D A
Bondke, A
Fuchter, M J
Coombes, R C
Barrett, A G M
Ali, S
Aboagye, E O
Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title_full Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title_fullStr Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title_full_unstemmed Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title_short Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance
title_sort development of a cyclin-dependent kinase inhibitor devoid of abc transporter-dependent drug resistance
topic Translational Therapeutics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817326/
https://www.ncbi.nlm.nih.gov/pubmed/24071597
http://dx.doi.org/10.1038/bjc.2013.584
work_keys_str_mv AT kaliszczakm developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT patelh developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT krollshb developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT carrolll developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT smithg developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT delaneys developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT heathcoteda developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT bondkea developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT fuchtermj developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT coombesrc developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT barrettagm developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT alis developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance
AT aboagyeeo developmentofacyclindependentkinaseinhibitordevoidofabctransporterdependentdrugresistance