Cargando…

Mechanisms of copper homeostasis in bacteria

Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu(+) transport (entry-exit) and traffic through different comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Argüello, José M., Raimunda, Daniel, Padilla-Benavides, Teresita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817396/
https://www.ncbi.nlm.nih.gov/pubmed/24205499
http://dx.doi.org/10.3389/fcimb.2013.00073
Descripción
Sumario:Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu(+) transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures.