Cargando…

Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakse, Noel, Pasturel, Alain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817448/
https://www.ncbi.nlm.nih.gov/pubmed/24190311
http://dx.doi.org/10.1038/srep03135
_version_ 1782478078303272960
author Jakse, Noel
Pasturel, Alain
author_facet Jakse, Noel
Pasturel, Alain
author_sort Jakse, Noel
collection PubMed
description We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid.
format Online
Article
Text
id pubmed-3817448
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38174482013-11-06 Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics Jakse, Noel Pasturel, Alain Sci Rep Article We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. Nature Publishing Group 2013-11-05 /pmc/articles/PMC3817448/ /pubmed/24190311 http://dx.doi.org/10.1038/srep03135 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Jakse, Noel
Pasturel, Alain
Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title_full Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title_fullStr Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title_full_unstemmed Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title_short Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
title_sort liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817448/
https://www.ncbi.nlm.nih.gov/pubmed/24190311
http://dx.doi.org/10.1038/srep03135
work_keys_str_mv AT jaksenoel liquidaluminumatomicdiffusionandviscosityfromabinitiomoleculardynamics
AT pasturelalain liquidaluminumatomicdiffusionandviscosityfromabinitiomoleculardynamics