Cargando…

Formins and membranes: anchoring cortical actin to the cell wall and beyond

Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two – Class I and II – present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the...

Descripción completa

Detalles Bibliográficos
Autor principal: Cvrčková, Fatima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817587/
https://www.ncbi.nlm.nih.gov/pubmed/24204371
http://dx.doi.org/10.3389/fpls.2013.00436
Descripción
Sumario:Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two – Class I and II – present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such “non-classical” formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.