Cargando…
Galvanic vestibular stimulation increases novelty in free selection of manual actions
Making optimal choices in changing environments implies the ability to balance routine, exploitative patterns of behavior with novel, exploratory ones. We investigated whether galvanic vestibular stimulation (GVS) interferes with the balance between exploratory and exploitative behaviors in a free a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817628/ https://www.ncbi.nlm.nih.gov/pubmed/24204333 http://dx.doi.org/10.3389/fnint.2013.00074 |
Sumario: | Making optimal choices in changing environments implies the ability to balance routine, exploitative patterns of behavior with novel, exploratory ones. We investigated whether galvanic vestibular stimulation (GVS) interferes with the balance between exploratory and exploitative behaviors in a free action selection task. Brief right-anodal and left-cathodal GVS or left-anodal and right-cathodal GVS were delivered at random to activate sensorimotor circuits in the left and right hemisphere, respectively. A sham stimulation condition was included. Participants endogenously generated sequences of possible actions, by freely choosing successive movements of the index or middle finger of the left or right hand. Left-anodal and right-cathodal GVS, which preferentially activates the vestibular projections in the right cerebral hemisphere, increased the novelty in action sequences, as measured by the number of runs in the sequences. In contrast, right-anodal and left-cathodal GVS decreased the number of runs. There was no evidence of GVS-induced spatial bias in action choices. Our results confirm previous reports showing a polarity-dependent effect of GVS on the balance between novel and routine responses, and thus between exploratory and exploitative behaviors. |
---|