Cargando…
Gene regulatory networks inference using a multi-GPU exhaustive search algorithm
BACKGROUND: Gene regulatory networks (GRN) inference is an important bioinformatics problem in which the gene interactions need to be deduced from gene expression data, such as microarray data. Feature selection methods can be applied to this problem. A feature selection technique is composed by two...
Autores principales: | Borelli, Fabrizio F, de Camargo, Raphael Y, Martins, David C, Rozante, Luiz CS |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817808/ https://www.ncbi.nlm.nih.gov/pubmed/24564268 http://dx.doi.org/10.1186/1471-2105-14-S18-S5 |
Ejemplares similares
-
Fast GPU Nearest Neighbors search algorithms for the CMS experiment at LHC
por: Degano, Alessandro
Publicado: (2018) -
ITS Cluster Finding Algorithm on GPU
por: Changaival, Boonyarit
Publicado: (2014) -
Fused Regression for Multi-source Gene Regulatory Network Inference
por: Lam, Kari Y., et al.
Publicado: (2016) -
NMF-mGPU: non-negative matrix factorization on multi-GPU systems
por: Mejía-Roa, Edgardo, et al.
Publicado: (2015) -
Comparison of evolutionary algorithms in gene regulatory network model inference
por: Sîrbu, Alina, et al.
Publicado: (2010)