Cargando…
Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiote...
Autores principales: | Yu, Qiang, Tang, Huajin, Tan, Kay Chen, Li, Haizhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818323/ https://www.ncbi.nlm.nih.gov/pubmed/24223789 http://dx.doi.org/10.1371/journal.pone.0078318 |
Ejemplares similares
-
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023) -
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity
por: Albers, Christian, et al.
Publicado: (2016) -
Natural firing patterns reduce sensitivity of synaptic plasticity to spike-timing
por: Graupner, Michael, et al.
Publicado: (2013) -
The Influence of the Number of Spiking Neurons on Synaptic Plasticity
por: Uleru, George-Iulian, et al.
Publicado: (2023) -
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014)