Cargando…
The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle
The N-terminal acetylation of Sir3 is essential for heterochromatin establishment and maintenance in yeast, but its mechanism of action is unknown. The crystal structure of the N-terminal acetylated BAH domain of S.cerevisiae Sir3 bound to the nucleosome core particle revealed that the N-terminal ac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818696/ https://www.ncbi.nlm.nih.gov/pubmed/23934150 http://dx.doi.org/10.1038/nsmb.2641 |
Sumario: | The N-terminal acetylation of Sir3 is essential for heterochromatin establishment and maintenance in yeast, but its mechanism of action is unknown. The crystal structure of the N-terminal acetylated BAH domain of S.cerevisiae Sir3 bound to the nucleosome core particle revealed that the N-terminal acetylation stabilizes the interaction of Sir3 with the nucleosome. Additionally, we present a new method for the production of protein-nucleosome complexes for structural analysis. |
---|