Cargando…
Subtractive Fuzzy Classifier Based Driver Distraction Levels Classification Using EEG
[Purpose] In earlier studies of driver distraction, researchers classified distraction into two levels (not distracted, and distracted). This study classified four levels of distraction (neutral, low, medium, high). [Subjects and Methods] Fifty Asian subjects (n=50, 43 males, 7 females), age range 2...
Autores principales: | Wali, Mousa Kadhim, Murugappan, Murugappan, Ahmad, Badlishah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society of Physical Therapy Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818778/ https://www.ncbi.nlm.nih.gov/pubmed/24259914 http://dx.doi.org/10.1589/jpts.25.1055 |
Ejemplares similares
-
Detecting Driver Drowsiness Based on Sensors: A Review
por: Sahayadhas, Arun, et al.
Publicado: (2012) -
Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators
por: Perera, Dulan, et al.
Publicado: (2022) -
Correction: Sahayadhas, A., et al. Detecting Driver Drowsiness Based on Sensors: A Review. Sensors 2012, 12, 16937–16953
por: Sahayadhas, Arun, et al.
Publicado: (2021) -
Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human
Emotional State Classification Using Discrete Wavelet Transform (DWT)
por: Murugappan, Murugappan, et al.
Publicado: (2013) -
Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
por: Selvaraj, Jerritta, et al.
Publicado: (2013)