Cargando…
A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology
Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in wh...
Autores principales: | Koo, Ching Lee, Liew, Mei Jing, Mohamad, Mohd Saberi, Mohamed Salleh, Abdul Hakim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818807/ https://www.ncbi.nlm.nih.gov/pubmed/24228248 http://dx.doi.org/10.1155/2013/432375 |
Ejemplares similares
-
Random forest for gene selection and microarray data classification
por: Moorthy, Kohbalan, et al.
Publicado: (2011) -
Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles
por: Park, Chihyun, et al.
Publicado: (2018) -
Gene–gene interaction detection with deep learning
por: Cui, Tianyu, et al.
Publicado: (2022) -
In silico gene knockout prediction using a hybrid of Bat algorithm and minimization of metabolic adjustment
por: Man, Mei Yen, et al.
Publicado: (2021) -
Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati
por: Yaacob, Norhayati, et al.
Publicado: (2016)