Cargando…
Neurotransmitter testing of the urine: a comprehensive analysis
This paper analyzes the statistical correlation of urinary serotonin and dopamine data in subjects not suffering from monoamine-secreting tumors such as pheochromocytoma or carcinoid syndrome. Peer-reviewed literature and statistical analyses were searched and monoamine (serotonin and dopamine) assa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818889/ https://www.ncbi.nlm.nih.gov/pubmed/24198626 http://dx.doi.org/10.2147/OAJU.S13370 |
Sumario: | This paper analyzes the statistical correlation of urinary serotonin and dopamine data in subjects not suffering from monoamine-secreting tumors such as pheochromocytoma or carcinoid syndrome. Peer-reviewed literature and statistical analyses were searched and monoamine (serotonin and dopamine) assays defined in order to facilitate their proper interpretation. Many research findings in the literature are novel. Baseline assays completed with no monoamine precursors differ from baseline assays performed on a different day in the same subject. There is currently no scientific basis, value, or predictability in obtaining baseline monoamine assays. Urinary assays performed while taking precursors can demonstrate a lack of correlation or unexpected correlations such as inverse relationships. The only valid model for interpretation of urinary monoamine assays is the “three-phase model” which leads to predictability between monoamine assays and precursor administration in varied amounts. PURPOSE: This paper reviews the basic science of urinary monoamine assays. Results of statistical analysis correlating baseline and nonbaseline assays are reported and provide valid methods for interpretation of urinary serotonin and dopamine results. PATIENTS AND METHODS: Key scientific claims promoting the validity of the urinary neurotransmitter testing (UNT) model applications are discussed. Many of these claims were not supported by the scientific literature. Matched-pairs t-tests were performed on several groupings. Results of all statistical tests were compared with peer-reviewed literature. RESULTS: The statistical analysis failed to support the UNT model. Peer-reviewed literature search failed to verify scientific clams made in support of applications of the UNT model in many cases. |
---|