Cargando…
Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819246/ https://www.ncbi.nlm.nih.gov/pubmed/24223196 http://dx.doi.org/10.1371/journal.pone.0079814 |
_version_ | 1782289958762971136 |
---|---|
author | Wang, Li-Ting Chen, Bo-Lin Wu, Cheng-Tien Huang, Kuo-How Chiang, Chih-Kang Hwa Liu, Shing |
author_facet | Wang, Li-Ting Chen, Bo-Lin Wu, Cheng-Tien Huang, Kuo-How Chiang, Chih-Kang Hwa Liu, Shing |
author_sort | Wang, Li-Ting |
collection | PubMed |
description | Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury. |
format | Online Article Text |
id | pubmed-3819246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38192462013-11-12 Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury Wang, Li-Ting Chen, Bo-Lin Wu, Cheng-Tien Huang, Kuo-How Chiang, Chih-Kang Hwa Liu, Shing PLoS One Research Article Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury. Public Library of Science 2013-11-06 /pmc/articles/PMC3819246/ /pubmed/24223196 http://dx.doi.org/10.1371/journal.pone.0079814 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Li-Ting Chen, Bo-Lin Wu, Cheng-Tien Huang, Kuo-How Chiang, Chih-Kang Hwa Liu, Shing Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title | Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title_full | Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title_fullStr | Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title_full_unstemmed | Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title_short | Protective Role of AMP-Activated Protein Kinase-Evoked Autophagy on an In Vitro Model of Ischemia/Reperfusion-Induced Renal Tubular Cell Injury |
title_sort | protective role of amp-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819246/ https://www.ncbi.nlm.nih.gov/pubmed/24223196 http://dx.doi.org/10.1371/journal.pone.0079814 |
work_keys_str_mv | AT wangliting protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury AT chenbolin protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury AT wuchengtien protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury AT huangkuohow protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury AT chiangchihkang protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury AT hwaliushing protectiveroleofampactivatedproteinkinaseevokedautophagyonaninvitromodelofischemiareperfusioninducedrenaltubularcellinjury |