Cargando…
New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI
Superparamagnetic iron oxide (SPIO) and ultra small superparamagnetic iron oxide (USPIO) nanoparticles have been developed as magnetic resonance imaging (MRI) contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is (~) 30nm or less, present R1 and R2...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819506/ https://www.ncbi.nlm.nih.gov/pubmed/24223101 http://dx.doi.org/10.1371/journal.pone.0078542 |
_version_ | 1782289997021315072 |
---|---|
author | Antonelli, Antonella Sfara, Carla Battistelli, Serafina Canonico, Barbara Arcangeletti, Marcella Manuali, Elisabetta Salamida, Sonia Papa, Stefano Magnani, Mauro |
author_facet | Antonelli, Antonella Sfara, Carla Battistelli, Serafina Canonico, Barbara Arcangeletti, Marcella Manuali, Elisabetta Salamida, Sonia Papa, Stefano Magnani, Mauro |
author_sort | Antonelli, Antonella |
collection | PubMed |
description | Superparamagnetic iron oxide (SPIO) and ultra small superparamagnetic iron oxide (USPIO) nanoparticles have been developed as magnetic resonance imaging (MRI) contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is (~) 30nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES). To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs) through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7mM Fe) higher than murine SPIO-loaded RBCs (1.4-3.55mM Fe). The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in animal blood is 2-3 times higher than iron concentration obtained by the use of murine SPIO-loaded RBCs. |
format | Online Article Text |
id | pubmed-3819506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38195062013-11-12 New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI Antonelli, Antonella Sfara, Carla Battistelli, Serafina Canonico, Barbara Arcangeletti, Marcella Manuali, Elisabetta Salamida, Sonia Papa, Stefano Magnani, Mauro PLoS One Research Article Superparamagnetic iron oxide (SPIO) and ultra small superparamagnetic iron oxide (USPIO) nanoparticles have been developed as magnetic resonance imaging (MRI) contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is (~) 30nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES). To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs) through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7mM Fe) higher than murine SPIO-loaded RBCs (1.4-3.55mM Fe). The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in animal blood is 2-3 times higher than iron concentration obtained by the use of murine SPIO-loaded RBCs. Public Library of Science 2013-10-25 /pmc/articles/PMC3819506/ /pubmed/24223101 http://dx.doi.org/10.1371/journal.pone.0078542 Text en © 2013 Antonelli et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Antonelli, Antonella Sfara, Carla Battistelli, Serafina Canonico, Barbara Arcangeletti, Marcella Manuali, Elisabetta Salamida, Sonia Papa, Stefano Magnani, Mauro New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title | New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title_full | New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title_fullStr | New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title_full_unstemmed | New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title_short | New Strategies to Prolong the In Vivo Life Span of Iron-Based Contrast Agents for MRI |
title_sort | new strategies to prolong the in vivo life span of iron-based contrast agents for mri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819506/ https://www.ncbi.nlm.nih.gov/pubmed/24223101 http://dx.doi.org/10.1371/journal.pone.0078542 |
work_keys_str_mv | AT antonelliantonella newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT sfaracarla newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT battistelliserafina newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT canonicobarbara newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT arcangelettimarcella newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT manualielisabetta newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT salamidasonia newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT papastefano newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri AT magnanimauro newstrategiestoprolongtheinvivolifespanofironbasedcontrastagentsformri |