Cargando…
Automatic Vasculature Identification in Coronary Angiograms by Adaptive Geometrical Tracking
As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estima...
Autores principales: | Xiao, Ruoxiu, Yang, Jian, Goyal, Mahima, Liu, Yue, Wang, Yongtian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819827/ https://www.ncbi.nlm.nih.gov/pubmed/24232461 http://dx.doi.org/10.1155/2013/796342 |
Ejemplares similares
-
Segmentation and Automatic Identification of Vasculature in Coronary Angiograms
por: Liu, Yaofang, et al.
Publicado: (2021) -
Adaptive Ridge Point Refinement for Seeds Detection in X-Ray Coronary Angiogram
por: Xiao, Ruoxiu, et al.
Publicado: (2015) -
Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking
por: Shoujun, Zhou, et al.
Publicado: (2010) -
Automatic Characterization of Retinal Blood Flow Using OCT Angiograms
por: Aharony, Omer, et al.
Publicado: (2019) -
Diagnostic Angiograms and Percutaneous Coronary Interventions in Pregnancy
por: Khaing, Phyo Htet, et al.
Publicado: (2020)