Cargando…

On a Class of Two-Dimensional Douglas and Projectively Flat Finsler Metrics

We study a class of two-dimensional Finsler metrics defined by a Riemannian metric α and a 1-form β. We characterize those metrics which are Douglasian or locally projectively flat by some equations. In particular, it shows that the known fact that β is always closed for those metrics in higher dime...

Descripción completa

Detalles Bibliográficos
Autor principal: Yang, Guojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819927/
https://www.ncbi.nlm.nih.gov/pubmed/24250263
http://dx.doi.org/10.1155/2013/291491
Descripción
Sumario:We study a class of two-dimensional Finsler metrics defined by a Riemannian metric α and a 1-form β. We characterize those metrics which are Douglasian or locally projectively flat by some equations. In particular, it shows that the known fact that β is always closed for those metrics in higher dimensions is no longer true in two-dimensional case. Further, we determine the local structures of two-dimensional (α, β)-metrics which are Douglasian, and some families of examples are given for projectively flat classes with β being not closed.