Cargando…
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
The authors find the greatest value λ and the least value μ, such that the double inequality [Formula: see text] holds for all α ∈ (0,1) and a, b > 0 with a ≠ b, where [Formula: see text] , A(a, b) = (a + b)/2, and [Formula: see text] denote, respectively, the centroidal, arithmetic, and Toader m...
Autor principal: | Jiang, Wei-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819953/ https://www.ncbi.nlm.nih.gov/pubmed/24470793 http://dx.doi.org/10.1155/2013/842542 |
Ejemplares similares
-
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
por: Zhao, Tie-Hong, et al.
Publicado: (2017) -
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
por: Ding, Qing, et al.
Publicado: (2017) -
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
por: Yang, Yue-Ying, et al.
Publicado: (2017) -
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
por: Qian, Wei-Mao, et al.
Publicado: (2017) -
Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
por: Xu, Hui-Zuo, et al.
Publicado: (2018)