Cargando…

Short-time quantum propagator and Bohmian trajectories()

We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point...

Descripción completa

Detalles Bibliográficos
Autores principales: de Gosson, Maurice, Hiley, Basil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820027/
https://www.ncbi.nlm.nih.gov/pubmed/24319313
http://dx.doi.org/10.1016/j.physleta.2013.08.031
_version_ 1782290074614890496
author de Gosson, Maurice
Hiley, Basil
author_facet de Gosson, Maurice
Hiley, Basil
author_sort de Gosson, Maurice
collection PubMed
description We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times.
format Online
Article
Text
id pubmed-3820027
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-38200272013-12-06 Short-time quantum propagator and Bohmian trajectories() de Gosson, Maurice Hiley, Basil Phys Lett A Article We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times. Elsevier 2013-12-06 /pmc/articles/PMC3820027/ /pubmed/24319313 http://dx.doi.org/10.1016/j.physleta.2013.08.031 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
de Gosson, Maurice
Hiley, Basil
Short-time quantum propagator and Bohmian trajectories()
title Short-time quantum propagator and Bohmian trajectories()
title_full Short-time quantum propagator and Bohmian trajectories()
title_fullStr Short-time quantum propagator and Bohmian trajectories()
title_full_unstemmed Short-time quantum propagator and Bohmian trajectories()
title_short Short-time quantum propagator and Bohmian trajectories()
title_sort short-time quantum propagator and bohmian trajectories()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820027/
https://www.ncbi.nlm.nih.gov/pubmed/24319313
http://dx.doi.org/10.1016/j.physleta.2013.08.031
work_keys_str_mv AT degossonmaurice shorttimequantumpropagatorandbohmiantrajectories
AT hileybasil shorttimequantumpropagatorandbohmiantrajectories