Cargando…
Short-time quantum propagator and Bohmian trajectories()
We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820027/ https://www.ncbi.nlm.nih.gov/pubmed/24319313 http://dx.doi.org/10.1016/j.physleta.2013.08.031 |
_version_ | 1782290074614890496 |
---|---|
author | de Gosson, Maurice Hiley, Basil |
author_facet | de Gosson, Maurice Hiley, Basil |
author_sort | de Gosson, Maurice |
collection | PubMed |
description | We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times. |
format | Online Article Text |
id | pubmed-3820027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-38200272013-12-06 Short-time quantum propagator and Bohmian trajectories() de Gosson, Maurice Hiley, Basil Phys Lett A Article We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use these estimates to derive an accurate expression modulo [Formula: see text] for the quantum propagator and we show that the quantum potential is negligible modulo [Formula: see text] for a point source, thus justifying an unfortunately largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the quantum motion is classical for very short times. Elsevier 2013-12-06 /pmc/articles/PMC3820027/ /pubmed/24319313 http://dx.doi.org/10.1016/j.physleta.2013.08.031 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article de Gosson, Maurice Hiley, Basil Short-time quantum propagator and Bohmian trajectories() |
title | Short-time quantum propagator and Bohmian trajectories() |
title_full | Short-time quantum propagator and Bohmian trajectories() |
title_fullStr | Short-time quantum propagator and Bohmian trajectories() |
title_full_unstemmed | Short-time quantum propagator and Bohmian trajectories() |
title_short | Short-time quantum propagator and Bohmian trajectories() |
title_sort | short-time quantum propagator and bohmian trajectories() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820027/ https://www.ncbi.nlm.nih.gov/pubmed/24319313 http://dx.doi.org/10.1016/j.physleta.2013.08.031 |
work_keys_str_mv | AT degossonmaurice shorttimequantumpropagatorandbohmiantrajectories AT hileybasil shorttimequantumpropagatorandbohmiantrajectories |