Cargando…
Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT)
[Purpose] Intelligent emotion assessment systems have been highly successful in a variety of applications, such as e-learning, psychology, and psycho-physiology. This study aimed to assess five different human emotions (happiness, disgust, fear, sadness, and neutral) using heart rate variability (HR...
Autores principales: | Murugappan, Murugappan, Murugappan, Subbulakshmi, Zheng, Bong Siao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society of Physical Therapy Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820413/ https://www.ncbi.nlm.nih.gov/pubmed/24259846 http://dx.doi.org/10.1589/jpts.25.753 |
Ejemplares similares
-
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020) -
Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
por: Selvaraj, Jerritta, et al.
Publicado: (2013) -
A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm
por: Rizwan, Ali, et al.
Publicado: (2022) -
Brinjal leaf diseases detection based on discrete Shearlet transform and Deep Convolutional Neural Network
por: Abisha, S., et al.
Publicado: (2023) -
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions
por: Maruthapillai, Vasanthan, et al.
Publicado: (2016)