Cargando…

Feminization of Longnose Dace (Rhinichthys cataractae) in the Oldman River, Alberta, (Canada) Provides Evidence of Widespread Endocrine Disruption in an Agricultural Basin

We sampled an abundant, native minnow (Longnose dace—Rhinichthys cataractae) throughout the Oldman River, Alberta, to determine physiological responses and possible population level consequences from exposure to compounds with hormone-like activity. Sex ratios varied between sites, were female-biase...

Descripción completa

Detalles Bibliográficos
Autores principales: Evans, Joyce S., Jackson, Leland J., Habibi, Hamid R., Ikonomou, Michael G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820441/
https://www.ncbi.nlm.nih.gov/pubmed/24278710
http://dx.doi.org/10.6064/2012/521931
Descripción
Sumario:We sampled an abundant, native minnow (Longnose dace—Rhinichthys cataractae) throughout the Oldman River, Alberta, to determine physiological responses and possible population level consequences from exposure to compounds with hormone-like activity. Sex ratios varied between sites, were female-biased, and ranged from just over 50% to almost 90%. Histological examination of gonads revealed that at the sites with >60% females in the adult population, there was up to 38% occurrence of intersex gonads in fish identified through visual examination of the gonads as male. In the majority of intersex gonad cases, there was a large proportion (approx., 50%) of oocytes within the testicular tissue. In male dace, vitellogenin mRNA expression generally increased with distance downstream. We analyzed river water for 28 endocrine disrupting compounds from eight functional classes, most with confirmed estrogen-like activity, including synthetic estrogens and hormone therapy drugs characteristic of municipal wastewater effluent, plus natural hormones and veterinary pharmaceuticals characteristic of livestock production. The spatial correlation between detected chemical residues and effects to dace physiology indicate that multiple land uses have a cumulative impact on dace in the Oldman River and effects range from altered gene regulation to severely female-biased sex ratios.