Cargando…

Vapourisers: Physical Principles and Classification

Vapourisers have evolved from rudimentary inhalers to the microprocessor controlled, temperature compensated and flow sensing devices, which are universal today. The improvements in the design was influenced by the development of potent inhalational anaesthetics, unique properties of some agents, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhulkhed, Vithal, Shetti, Akshaya, Naik, Shraddha, Dhulkhed, Pavan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821262/
https://www.ncbi.nlm.nih.gov/pubmed/24249878
http://dx.doi.org/10.4103/0019-5049.120141
Descripción
Sumario:Vapourisers have evolved from rudimentary inhalers to the microprocessor controlled, temperature compensated and flow sensing devices, which are universal today. The improvements in the design was influenced by the development of potent inhalational anaesthetics, unique properties of some agents, a deeper understanding of their mechanism of action, inherent flaws in the older vapourisers, mechanical problems due to thymol deposition, factors influencing their output such as temperature and pressure variations. It is important to review the principles governing the design of the vapouriser to gain insight into their working. It is fascinating to know how some of the older vapourisers, popularly used in the past, functioned. The descendant of Oxford Miniature Vapourizer, the Triservice vapouriser is still a part of the military anaesthesia draw over equipment meant for field use whereas the Copper Kettle the first precision device is the fore-runner of the Tec 6 and Aladdin cassette vapouriser. Anaesthesia trainees if exposed to draw over techniques get a deeper understanding of equipment and improved skills for disaster situations. In the recent advanced versions of the vapouriser a central processing unit in the anaesthetic machine controls the operation by continuously monitoring and adjusting fresh gas flow through the vapouriser to maintain desired concentration of the vapour.