Cargando…
Surface Electromyography Signal Processing and Classification Techniques
Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance...
Autores principales: | Chowdhury, Rubana H., Reaz, Mamun B. I., Ali, Mohd Alauddin Bin Mohd, Bakar, Ashrif A. A., Chellappan, Kalaivani, Chang, Tae. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821366/ https://www.ncbi.nlm.nih.gov/pubmed/24048337 http://dx.doi.org/10.3390/s130912431 |
Ejemplares similares
-
Evolution of Electroencephalogram Signal Analysis Techniques during Anesthesia
por: Al-Kadi, Mahmoud I., et al.
Publicado: (2013) -
Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait
por: Haque, Fahmida, et al.
Publicado: (2022) -
Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique
por: Al-Kadi, Mahmoud I., et al.
Publicado: (2014) -
Advances in Bio-Tactile Sensors for Minimally Invasive Surgery Using the Fibre Bragg Grating Force Sensor Technique:A Survey
por: Abushagur, Abdulfatah A.G., et al.
Publicado: (2014) -
Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification
por: Haque, Fahmida, et al.
Publicado: (2021)