Cargando…
Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms
When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821565/ https://www.ncbi.nlm.nih.gov/pubmed/24071942 http://dx.doi.org/10.3390/ijms141019434 |
_version_ | 1782290317012107264 |
---|---|
author | Manner, Suvi Skogman, Malena Goeres, Darla Vuorela, Pia Fallarero, Adyary |
author_facet | Manner, Suvi Skogman, Malena Goeres, Darla Vuorela, Pia Fallarero, Adyary |
author_sort | Manner, Suvi |
collection | PubMed |
description | When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. |
format | Online Article Text |
id | pubmed-3821565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-38215652013-11-11 Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms Manner, Suvi Skogman, Malena Goeres, Darla Vuorela, Pia Fallarero, Adyary Int J Mol Sci Article When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. Molecular Diversity Preservation International (MDPI) 2013-09-25 /pmc/articles/PMC3821565/ /pubmed/24071942 http://dx.doi.org/10.3390/ijms141019434 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Manner, Suvi Skogman, Malena Goeres, Darla Vuorela, Pia Fallarero, Adyary Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title | Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title_full | Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title_fullStr | Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title_full_unstemmed | Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title_short | Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms |
title_sort | systematic exploration of natural and synthetic flavonoids for the inhibition of staphylococcus aureus biofilms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821565/ https://www.ncbi.nlm.nih.gov/pubmed/24071942 http://dx.doi.org/10.3390/ijms141019434 |
work_keys_str_mv | AT mannersuvi systematicexplorationofnaturalandsyntheticflavonoidsfortheinhibitionofstaphylococcusaureusbiofilms AT skogmanmalena systematicexplorationofnaturalandsyntheticflavonoidsfortheinhibitionofstaphylococcusaureusbiofilms AT goeresdarla systematicexplorationofnaturalandsyntheticflavonoidsfortheinhibitionofstaphylococcusaureusbiofilms AT vuorelapia systematicexplorationofnaturalandsyntheticflavonoidsfortheinhibitionofstaphylococcusaureusbiofilms AT fallareroadyary systematicexplorationofnaturalandsyntheticflavonoidsfortheinhibitionofstaphylococcusaureusbiofilms |