Cargando…
Apoptosis Induced by 13-S-hydroxyoctadecadienoic acid in the Breast Cancer Cell Lines, MCF-7 and MDA-MB-231
Objective(s) : The 15-Lipoxygenase-1(15-LOX-1) pathway has become of considerable interest as a promising molecular approach for the modulation of cancer cell growth. 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) is a main metabolite of 15-LOX-1 which is proposed to influence the cancer cell’s growt...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821886/ https://www.ncbi.nlm.nih.gov/pubmed/24250946 |
Sumario: | Objective(s) : The 15-Lipoxygenase-1(15-LOX-1) pathway has become of considerable interest as a promising molecular approach for the modulation of cancer cell growth. 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) is a main metabolite of 15-LOX-1 which is proposed to influence the cancer cell’s growth. This study aims to investigate the role of 13(S)-HODE in the regulation of cell growth and apoptosis in the breast cancer cell lines. Materials and Methods : MTT assay was used to examine the cytotoxic effect of 13(S)-HODE in the breast cancer cells, MCF-7 and MDA-MB-231.Annexin-V-FITC staining and cell cycle analysis were performed using flow cytometry. The effect of 13(S)-HODE on the expression level of Peroxisome proliferator-activated receptors-δ (PPAR-δ) was also evaluated. Results : The results demonstrated that 13(S)-HODE inhibited cell growth in a dose and time dependant manner in MCF-7 and MDA-MB-231 cell lines. The reduction of cell growth was associated with the induction of cell cycle arrest and apoptosis in the breast cancer cell lines. Moreover, PPAR-δ was down-regulated in response to 13(S)-HODE administration. Conclusion: This study conducted evidences in to the stimulatory effect of 13(S)-HODE on the inhibition of cell growth and induction of apoptosis in the breast cancer cell lines. |
---|