Cargando…

Modeling of Non-Small Cell Lung Cancer Volume Changes during CT-Based Image Guided Radiotherapy: Patterns Observed and Clinical Implications

Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT) based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 we...

Descripción completa

Detalles Bibliográficos
Autores principales: Gay, Hiram A., Taylor, Quendella Q., Kiriyama, Fumika, Dieck, Geoffrey T., Jenkins, Todd, Walker, Paul, Allison, Ron R., Ubezio, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821906/
https://www.ncbi.nlm.nih.gov/pubmed/24260040
http://dx.doi.org/10.1155/2013/637181
Descripción
Sumario:Background. To characterize the lung tumor volume response during conventional and hypofractionated radiotherapy (RT) based on diagnostic quality CT images prior to each treatment fraction. Methods. Out of 26 consecutive patients who had received CT-on-rails IGRT to the lung from 2004 to 2008, 18 were selected because they had lung lesions that could be easily distinguished. The time course of the tumor volume for each patient was individually analyzed using a computer program. Results. The model fits of group L (conventional fractionation) patients were very close to experimental data, with a median Δ% (average percent difference between data and fit) of 5.1% (range 3.5–10.2%). The fits obtained in group S (hypofractionation) patients were generally good, with a median Δ% of 7.2% (range 3.7–23.9%) for the best fitting model. Four types of tumor responses were observed—Type A: “high” kill and “slow” dying rate; Type B: “high” kill and “fast” dying rate; Type C: “low” kill and “slow” dying rate; and Type D: “low” kill and “fast” dying rate. Conclusions. The models used in this study performed well in fitting the available dataset. The models provided useful insights into the possible underlying mechanisms responsible for the RT tumor volume response.