Cargando…

Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells

Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its...

Descripción completa

Detalles Bibliográficos
Autores principales: Son, Mi-Young, Kim, Min-Jeong, Yu, Kweon, Koo, Deog-Bon, Cho, Yee Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822502/
https://www.ncbi.nlm.nih.gov/pubmed/19874423
http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x
_version_ 1782290417098686464
author Son, Mi-Young
Kim, Min-Jeong
Yu, Kweon
Koo, Deog-Bon
Cho, Yee Sook
author_facet Son, Mi-Young
Kim, Min-Jeong
Yu, Kweon
Koo, Deog-Bon
Cho, Yee Sook
author_sort Son, Mi-Young
collection PubMed
description Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs.
format Online
Article
Text
id pubmed-3822502
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-38225022015-04-06 Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells Son, Mi-Young Kim, Min-Jeong Yu, Kweon Koo, Deog-Bon Cho, Yee Sook J Cell Mol Med Articles Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs. Blackwell Publishing Ltd 2011-01 2009-10-29 /pmc/articles/PMC3822502/ /pubmed/19874423 http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x Text en © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
spellingShingle Articles
Son, Mi-Young
Kim, Min-Jeong
Yu, Kweon
Koo, Deog-Bon
Cho, Yee Sook
Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title_full Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title_fullStr Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title_full_unstemmed Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title_short Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
title_sort involvement of neuropeptide y and its y1 and y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822502/
https://www.ncbi.nlm.nih.gov/pubmed/19874423
http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x
work_keys_str_mv AT sonmiyoung involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells
AT kimminjeong involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells
AT yukweon involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells
AT koodeogbon involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells
AT choyeesook involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells