Cargando…
Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822502/ https://www.ncbi.nlm.nih.gov/pubmed/19874423 http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x |
_version_ | 1782290417098686464 |
---|---|
author | Son, Mi-Young Kim, Min-Jeong Yu, Kweon Koo, Deog-Bon Cho, Yee Sook |
author_facet | Son, Mi-Young Kim, Min-Jeong Yu, Kweon Koo, Deog-Bon Cho, Yee Sook |
author_sort | Son, Mi-Young |
collection | PubMed |
description | Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs. |
format | Online Article Text |
id | pubmed-3822502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38225022015-04-06 Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells Son, Mi-Young Kim, Min-Jeong Yu, Kweon Koo, Deog-Bon Cho, Yee Sook J Cell Mol Med Articles Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs. Blackwell Publishing Ltd 2011-01 2009-10-29 /pmc/articles/PMC3822502/ /pubmed/19874423 http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x Text en © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd |
spellingShingle | Articles Son, Mi-Young Kim, Min-Jeong Yu, Kweon Koo, Deog-Bon Cho, Yee Sook Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title | Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title_full | Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title_fullStr | Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title_full_unstemmed | Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title_short | Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
title_sort | involvement of neuropeptide y and its y1 and y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822502/ https://www.ncbi.nlm.nih.gov/pubmed/19874423 http://dx.doi.org/10.1111/j.1582-4934.2009.00956.x |
work_keys_str_mv | AT sonmiyoung involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells AT kimminjeong involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells AT yukweon involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells AT koodeogbon involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells AT choyeesook involvementofneuropeptideyanditsy1andy5receptorsinmaintainingselfrenewalandproliferationofhumanembryonicstemcells |