Cargando…
Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells
Zoledronic acid (ZOL) is the most potent nitrogen-containing bisphosphonate (N-BPs) that strongly binds to bone mineral and acts as a powerful inhibitor of bone resorption, already clinically available for the treatment of patients with osteolytic metastases. Recent data also suggest that ZOL, used...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822988/ https://www.ncbi.nlm.nih.gov/pubmed/22260151 http://dx.doi.org/10.1111/j.1582-4934.2012.01527.x |
_version_ | 1782290489335087104 |
---|---|
author | Insalaco, Lavinia Gaudio, Francesca Di Terrasi, Marianna Amodeo, Valeria Caruso, Stefano Corsini, Lidia Rita Fanale, Daniele Margarese, Naomi Santini, Daniele Bazan, Viviana Russo, Antonio |
author_facet | Insalaco, Lavinia Gaudio, Francesca Di Terrasi, Marianna Amodeo, Valeria Caruso, Stefano Corsini, Lidia Rita Fanale, Daniele Margarese, Naomi Santini, Daniele Bazan, Viviana Russo, Antonio |
author_sort | Insalaco, Lavinia |
collection | PubMed |
description | Zoledronic acid (ZOL) is the most potent nitrogen-containing bisphosphonate (N-BPs) that strongly binds to bone mineral and acts as a powerful inhibitor of bone resorption, already clinically available for the treatment of patients with osteolytic metastases. Recent data also suggest that ZOL, used in breast cancer, may provide more than just supportive care modifying the course of the disease, though the possible molecular mechanism of action is still unclear.As breast cancer is one of the primary tumours with high propensity to metastasize to the bone, we investigated, for the first time, differential gene expression profile on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells treated with low doses of ZOL (10 μM). Microarrays analysis was used to identify, describe and summarize evidence regarding the molecular basis of actions of ZOL and of their possible direct anti-tumour effects. We validated gene expression results of specific transcripts involved in major cellular process by Real Time and Western Blot analysis and we observed inhibition of proliferation and migration through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Matrigel assay. We then focused on changes in the cytoskeletal components as fibronectin 1 (FN1), actin, and anti angiogenic compounds as transforming growth factor-β1 (TGF-β1) and thrombospondin 1 (THBS1). The up-regulation of these products may have an important role in inhibiting proliferation, invasion and angiogenesis mediated by ZOL. |
format | Online Article Text |
id | pubmed-3822988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38229882015-03-27 Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells Insalaco, Lavinia Gaudio, Francesca Di Terrasi, Marianna Amodeo, Valeria Caruso, Stefano Corsini, Lidia Rita Fanale, Daniele Margarese, Naomi Santini, Daniele Bazan, Viviana Russo, Antonio J Cell Mol Med Original Articles Zoledronic acid (ZOL) is the most potent nitrogen-containing bisphosphonate (N-BPs) that strongly binds to bone mineral and acts as a powerful inhibitor of bone resorption, already clinically available for the treatment of patients with osteolytic metastases. Recent data also suggest that ZOL, used in breast cancer, may provide more than just supportive care modifying the course of the disease, though the possible molecular mechanism of action is still unclear.As breast cancer is one of the primary tumours with high propensity to metastasize to the bone, we investigated, for the first time, differential gene expression profile on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells treated with low doses of ZOL (10 μM). Microarrays analysis was used to identify, describe and summarize evidence regarding the molecular basis of actions of ZOL and of their possible direct anti-tumour effects. We validated gene expression results of specific transcripts involved in major cellular process by Real Time and Western Blot analysis and we observed inhibition of proliferation and migration through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Matrigel assay. We then focused on changes in the cytoskeletal components as fibronectin 1 (FN1), actin, and anti angiogenic compounds as transforming growth factor-β1 (TGF-β1) and thrombospondin 1 (THBS1). The up-regulation of these products may have an important role in inhibiting proliferation, invasion and angiogenesis mediated by ZOL. Blackwell Publishing Ltd 2012-09 2012-08-23 /pmc/articles/PMC3822988/ /pubmed/22260151 http://dx.doi.org/10.1111/j.1582-4934.2012.01527.x Text en Copyright © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. |
spellingShingle | Original Articles Insalaco, Lavinia Gaudio, Francesca Di Terrasi, Marianna Amodeo, Valeria Caruso, Stefano Corsini, Lidia Rita Fanale, Daniele Margarese, Naomi Santini, Daniele Bazan, Viviana Russo, Antonio Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title | Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title_full | Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title_fullStr | Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title_full_unstemmed | Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title_short | Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
title_sort | analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822988/ https://www.ncbi.nlm.nih.gov/pubmed/22260151 http://dx.doi.org/10.1111/j.1582-4934.2012.01527.x |
work_keys_str_mv | AT insalacolavinia analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT gaudiofrancescadi analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT terrasimarianna analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT amodeovaleria analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT carusostefano analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT corsinilidiarita analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT fanaledaniele analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT margaresenaomi analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT santinidaniele analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT bazanviviana analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells AT russoantonio analysisofmolecularmechanismsandantitumouraleffectsofzoledronicacidinbreastcancercells |