Cargando…

Telocytes: new insight into the pathogenesis of gallstone disease

The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersa...

Descripción completa

Detalles Bibliográficos
Autores principales: Matyja, Andrzej, Gil, Krzysztof, Pasternak, Artur, Sztefko, Krystyna, Gajda, Mariusz, Tomaszewski, Krzysztof A, Matyja, Maciej, Walocha, Jerzy A, Kulig, Jan, Thor, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823177/
https://www.ncbi.nlm.nih.gov/pubmed/23551596
http://dx.doi.org/10.1111/jcmm.12057
Descripción
Sumario:The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c-Kit (anti-CD117) and anti-mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, P < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.