Cargando…

Regulation of raft-dependent endocytosis

Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveo-lae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Lajoie, P, Nabi, IR
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823247/
https://www.ncbi.nlm.nih.gov/pubmed/17760830
http://dx.doi.org/10.1111/j.1582-4934.2007.00083.x
Descripción
Sumario:Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveo-lae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholesterol sensitivity, raft endocytic routes show differential regulation by various cellular components including caveolin-1, dynamin-2 and regulators of the actin cytoskeleton. Dynamin-dependent raft pathways, mediated by caveolae and morphologically equivalent non-caveolin vesicular intermediates, are referred to as caveolae/raft-dependent endocytosis. In contrast, dynamin-independent raft pathways are mediated by non-caveolar intermediates. Raft-dependent endocytosis is regulated by tyrosine kinase inhibitors and, through the regulation of the internalization of various ligands, receptors and effectors, is also a determinant of cellular signaling. In this review, we characterize and discuss the regulation of raft-dependent endocytic pathways and the role of key regulators such as caveolin-1.