Cargando…

Immunohistochemical and ultrastructural characteristics of interstitial cells of Cajal in the rabbit duodenum. Presence of a single cilium

Santiago Ramón y Cajal discovered a new type of cell related to the myenteric plexus and also to the smooth muscle cells of the circular muscle layer of the intestine. Based on their morphology, relationships and staining characteristics, he considered these cells as primitive neurons. One century l...

Descripción completa

Detalles Bibliográficos
Autores principales: Junquera, Concepción, Martínez-Ciriano, Carmen, Castiella, Tomás, Serrano, Pedro, Azanza, María Jesús, Ramón y Cajal Junquera, Santiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823256/
https://www.ncbi.nlm.nih.gov/pubmed/17760839
http://dx.doi.org/10.1111/j.1582-4934.2007.00064.x
Descripción
Sumario:Santiago Ramón y Cajal discovered a new type of cell related to the myenteric plexus and also to the smooth muscle cells of the circular muscle layer of the intestine. Based on their morphology, relationships and staining characteristics, he considered these cells as primitive neurons. One century later, despite major improvements in cell biology, the interstitial cells of Cajal (ICCs) are still controversial for many researchers. The aim of study was to perform an immunohistochemical and ultrastructural characterization of the ICCs in the rabbit duo-denum. We have found interstitial cells that are positive for c-Kit, CD34 and nestin and are also positive for Ki67 protein, tightly associated with somatic cell proliferation. By means of electron microscopy, we describe ICCs around enteric ganglia. They present triangular or spindle forms and a very voluminous nucleus with scarce per-inuclear chromatin surrounded by a thin perinuclear cytoplasm that expands with long cytoplasmic processes. ICC processes penetrate among the smooth muscle cells and couple with the processes of other ICCs located in the connective tissue of the circular muscle layer and establish a three-dimensional network. Intercellular con-tacts by means of gap-like junctions are frequent. ICCs also establish gap-like junctions with smooth muscle cells. We also observe a population of interstitial cells of stellate morphology in the connective tissue that sur-rounds the muscle bundles in the circular muscle layer, usually close to nervous trunks. These cells establish different types of contacts with the muscle cells around them. In addition, the presence of a single cilium show-ing a structure 9 + 0 in an ICC is demonstrated for the first time. In conclusion, we report positive staining c-kit, CD34, nestin and Ki 67. ICCs fulfilled the usual transmission electron microscopy (TEM) criteria. A new ultrastructural characteristic of at least some ICCs is demonstrated: the presence of a single cilium. Some populations of ICCs in the rabbit duodenum present certain immunohistochemical and ultrastructural characteristics that often are present in progenitor cells.