Cargando…

Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory

Today, liver transplantation is still the only curative treatment for liver failure due to end-stage liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiegel, Henning C, Kaufmann, Peter M, Bruns, Helge, Kluth, Dietrich, Horch, Raymund E, Vacanti, Joseph P, Kneser, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823472/
https://www.ncbi.nlm.nih.gov/pubmed/18021311
http://dx.doi.org/10.1111/j.1582-4934.2007.00162.x
_version_ 1782290579389939712
author Fiegel, Henning C
Kaufmann, Peter M
Bruns, Helge
Kluth, Dietrich
Horch, Raymund E
Vacanti, Joseph P
Kneser, Ulrich
author_facet Fiegel, Henning C
Kaufmann, Peter M
Bruns, Helge
Kluth, Dietrich
Horch, Raymund E
Vacanti, Joseph P
Kneser, Ulrich
author_sort Fiegel, Henning C
collection PubMed
description Today, liver transplantation is still the only curative treatment for liver failure due to end-stage liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, for example, liver tissue engineering, are under investigation with the aim that in future an artificial liver tissue could be created and be used for the replacement of the liver function in patients. Using cells instead of organs in this setting should permit (i) expansion of cells in an in vitro phase, (ii) genetic or immunological manipulation of cells for transplantation, (iii) tissue typing and cryopreservation in a cell bank and (iv) the ex vivo genetic modification of patient's own cells prior to re-implantation. Function and differentiation of liver cells are influenced by the three-dimensional organ architecture. The use of polymeric matrices permits the three-dimensional formation of a neo tissue and specific stimulation by adequate modification of the matrix surface, which might be essential for appropriate differentiation of transplanted cells. In addition, culturing hepatocytes on three-dimensional matrices permits culture in a flow bioreactor system with increased function and survival of the cultured cells. Based on bioreactor technology, bioartificial liver devices (BAL) are developed for extracorporeal liver support. Although BALs improved clinical and metabolic conditions, increased patient survival rates have not been proven yet. For intracorporeal liver replacement, a concept that combines tissue engineering using three-dimensional, highly porous matrices with cell transplantation could be useful. In such a concept, whole liver mass transplantation, long-term engraftment and function as well as correction of a metabolic defect in animal models could be achieved with a principally reversible procedure. Future studies have to investigate which environmental conditions and transplantation system would be most suitable for the development of artificial functional liver tissue including blood supply for a potential use in a clinical setting.
format Online
Article
Text
id pubmed-3823472
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-38234722015-04-27 Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory Fiegel, Henning C Kaufmann, Peter M Bruns, Helge Kluth, Dietrich Horch, Raymund E Vacanti, Joseph P Kneser, Ulrich J Cell Mol Med Reviews Today, liver transplantation is still the only curative treatment for liver failure due to end-stage liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, for example, liver tissue engineering, are under investigation with the aim that in future an artificial liver tissue could be created and be used for the replacement of the liver function in patients. Using cells instead of organs in this setting should permit (i) expansion of cells in an in vitro phase, (ii) genetic or immunological manipulation of cells for transplantation, (iii) tissue typing and cryopreservation in a cell bank and (iv) the ex vivo genetic modification of patient's own cells prior to re-implantation. Function and differentiation of liver cells are influenced by the three-dimensional organ architecture. The use of polymeric matrices permits the three-dimensional formation of a neo tissue and specific stimulation by adequate modification of the matrix surface, which might be essential for appropriate differentiation of transplanted cells. In addition, culturing hepatocytes on three-dimensional matrices permits culture in a flow bioreactor system with increased function and survival of the cultured cells. Based on bioreactor technology, bioartificial liver devices (BAL) are developed for extracorporeal liver support. Although BALs improved clinical and metabolic conditions, increased patient survival rates have not been proven yet. For intracorporeal liver replacement, a concept that combines tissue engineering using three-dimensional, highly porous matrices with cell transplantation could be useful. In such a concept, whole liver mass transplantation, long-term engraftment and function as well as correction of a metabolic defect in animal models could be achieved with a principally reversible procedure. Future studies have to investigate which environmental conditions and transplantation system would be most suitable for the development of artificial functional liver tissue including blood supply for a potential use in a clinical setting. Blackwell Publishing Ltd 2008-01 2007-11-16 /pmc/articles/PMC3823472/ /pubmed/18021311 http://dx.doi.org/10.1111/j.1582-4934.2007.00162.x Text en 2008 The Authors Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
spellingShingle Reviews
Fiegel, Henning C
Kaufmann, Peter M
Bruns, Helge
Kluth, Dietrich
Horch, Raymund E
Vacanti, Joseph P
Kneser, Ulrich
Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title_full Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title_fullStr Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title_full_unstemmed Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title_short Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
title_sort hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823472/
https://www.ncbi.nlm.nih.gov/pubmed/18021311
http://dx.doi.org/10.1111/j.1582-4934.2007.00162.x
work_keys_str_mv AT fiegelhenningc hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT kaufmannpeterm hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT brunshelge hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT kluthdietrich hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT horchraymunde hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT vacantijosephp hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory
AT kneserulrich hepatictissueengineeringfromtransplantationtocustomizedcellbasedliverdirectedtherapiesfromthelaboratory