Cargando…
CaMKIIT287 and T305 regulate history-dependent increases in α agonist–induced vascular tone
CaMKII is a calcium and calmodulin-activated kinase that has been shown to regulate learning and memory in the brain, and contractility in blood vessels. Following Ca activation, CaMKII autophosphorylates, gaining a calcium-independent autonomous activity that reflects a molecular memory of having p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823483/ https://www.ncbi.nlm.nih.gov/pubmed/18088385 http://dx.doi.org/10.1111/j.1582-4934.2007.00202.x |
Sumario: | CaMKII is a calcium and calmodulin-activated kinase that has been shown to regulate learning and memory in the brain, and contractility in blood vessels. Following Ca activation, CaMKII autophosphorylates, gaining a calcium-independent autonomous activity that reflects a molecular memory of having previously come into contact with calcium. The present study addresses whether the molecular memory properties of CaMKII are involved in the modulation of sustained vascular tone. We demonstrate a history-dependence of α agonist-induced vascular tone and show that CaMKII activation in vascular cells is also history dependent. Autophosphorylation of Thr287, which is classically associated with autonomous activity, does not persist during tone maintenance after transient increases in intracellular calcium levels. However, we have found that another site, Thr305, known from in vitro studies to be inhibitory, is regulated by α agonists in that the inhibitory action is removed, thus leading to a delayed reactivation of CaMKII as measured by Thr287 phosphorylation. By the use of a small molecule CaMKII inhibitor (KN93) as well as a decoy peptide (autoinhibitory peptide; AIP) we show a cause and effect relationship between CaMKII reactivation and sustained vascular tone maintenance. Thus, it appears that a complex interplay between the regulation of Thr305 and Thr287 provides a novel mechanism by which a history-dependence is developed and contributes to a new facet of molecular memory for CaMKII of relevance to vascular tone maintenance. |
---|