Cargando…

Comparative Genome Analysis between Agrostis stolonifera and Members of the Pooideae Subfamily, including Brachypodium distachyon

Creeping bentgrass (Agrostis stolonifera, allotetraploid 2n = 4x = 28) is one of the major cool-season turfgrasses. It is widely used on golf courses due to its tolerance to low mowing and aggressive growth habit. In this study, we investigated genome relationships of creeping bentgrass relative to...

Descripción completa

Detalles Bibliográficos
Autores principales: Araneda, Loreto, Sim, Sung-Chur, Bae, Jin-Joo, Chakraborty, Nanda, Curley, Joe, Chang, Taehyun, Inoue, Maiko, Warnke, Scott, Jung, Geunhwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823605/
https://www.ncbi.nlm.nih.gov/pubmed/24244501
http://dx.doi.org/10.1371/journal.pone.0079425
Descripción
Sumario:Creeping bentgrass (Agrostis stolonifera, allotetraploid 2n = 4x = 28) is one of the major cool-season turfgrasses. It is widely used on golf courses due to its tolerance to low mowing and aggressive growth habit. In this study, we investigated genome relationships of creeping bentgrass relative to the Triticeae (a consensus map of Triticum aestivum, T. tauschii, Hordeum vulgare, and H. spontaneum), oat, rice, and ryegrass maps using a common set of 229 EST-RFLP markers. The genome comparisons based on the RFLP markers revealed large-scale chromosomal rearrangements on different numbers of linkage groups (LGs) of creeping bentgrass relative to the Triticeae (3 LGs), oat (4 LGs), and rice (8 LGs). However, we detected no chromosomal rearrangement between creeping bentgrass and ryegrass, suggesting that these recently domesticated species might be closely related, despite their memberships to different Pooideae tribes. In addition, the genome of creeping bentgrass was compared with the complete genome sequence of Brachypodium distachyon in Pooideae subfamily using both sequences of the above-mentioned mapped EST-RFLP markers and sequences of 8,470 publicly available A. stolonifera ESTs (AgEST). We discovered large-scale chromosomal rearrangements on six LGs of creeping bentgrass relative to B. distachyon. Also, a total of 24 syntenic blocks based on 678 orthologus loci were identified between these two grass species. The EST orthologs can be utilized in further comparative mapping of Pooideae species. These results will be useful for genetic improvement of Agrostis species and will provide a better understanding of evolution within Pooideae species.