Cargando…

Dynamic Quantitative Trait Loci Analysis of Seed Reserve Utilization during Three Germination Stages in Rice

In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed reserve utilization during the early (day 6), middle (day 10) and late (day 14) germination stages. The seedling dry weight (SDW) and weight of the mobilized seed reserve (...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Xinxin, Cheng, Jinping, Huang, Xi, Lai, Yanyan, Wang, Ling, Du, Wenli, Wang, Zhoufei, Zhang, Hongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823834/
https://www.ncbi.nlm.nih.gov/pubmed/24244592
http://dx.doi.org/10.1371/journal.pone.0080002
Descripción
Sumario:In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed reserve utilization during the early (day 6), middle (day 10) and late (day 14) germination stages. The seedling dry weight (SDW) and weight of the mobilized seed reserve (WMSR) were increased, while the seed reserve utilization efficiency (SRUE) decreased, during the process of seed germination. The SDW and WMSR were affected by the seed weight, while the SRUE was not affected by the seed weight. A total of twenty unconditional and twenty-one conditional additive QTLs and eight epistatic QTLs were identified at three germination stages, and the more QTLs were expressed at the late germination stage. Among them, twelve additive and three epistatic QTLs for SDW, eight additive and three epistatic QTLs for WMSR and thirteen additive and two epistatic QTLs for SRUE were identified, respectively. The phenotypic variation explained by each additive QTL, epistatic QTL and QTL × development interaction ranged from 6.10 to 23.91%, 1.79 to 6.88% and 0.22 to 2.86%, respectively. Two major additive QTLs qWMSR7.1 and qSRUE4.3 were identified, and each QTL could explain more than 20% of the total phenotypic variance. By comparing the chromosomal positions of these additive QTLs with those previously identified, eleven QTLs might represent novel genes. The best four cross combinations of each trait for the development of RIL populations were selected. The selected RILs and the identified QTLs might be applicable to improve rice seed reserve utilization by the marker-assisted selection approach.