Cargando…
Reaction Trajectory Revealed by a Joint Analysis of Protein Data Bank
Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823880/ https://www.ncbi.nlm.nih.gov/pubmed/24244274 http://dx.doi.org/10.1371/journal.pone.0077141 |
Sumario: | Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era. |
---|