Cargando…
Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these trea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824562/ https://www.ncbi.nlm.nih.gov/pubmed/24091769 http://dx.doi.org/10.1007/s10549-013-2707-7 |
_version_ | 1782290712998445056 |
---|---|
author | Seemann, Ingar te Poele, Johannes A. M. Song, Ji-Ying Hoving, Saske Russell, Nicola S. Stewart, Fiona A. |
author_facet | Seemann, Ingar te Poele, Johannes A. M. Song, Ji-Ying Hoving, Saske Russell, Nicola S. Stewart, Fiona A. |
author_sort | Seemann, Ingar |
collection | PubMed |
description | In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 inhibition increased radiation or anthracycline-induced toxicity. In an in vitro study, human cardiomyocytes were treated with irradiation or doxorubicin, alone or in combination with trastuzumab, and evaluated for cell survival and growth. Groups of mice received 0 or 14 Gy to the heart, alone or in combination with lapatinib, or 3 × 4 mg/kg doxorubicin alone or in combination with lapatinib. Mice were evaluated 40 weeks after treatment for cardiac damage. Changes in cardiac function ((99m)Tc-Myoview gated SPECT) were related to histomorphology and microvascular damage. Radiation or doxorubicin-induced cardiomyocyte toxicity (in vitro) were not exacerbated by trastuzumab. Cardiac irradiation of mice decreased microvascular density (MVD) and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor), but these changes were not exacerbated by lapatinib. Inflammatory responses in the irradiated epicardium (CD45+ and F4/80+ cells) were significantly reduced in combination with lapatinib. Irradiation, doxorubicin, and lapatinib each induced cardiac fibrosis but this was not further enhanced when treatments were combined. At the ultra-structural level, both lapatinib and doxorubicin induced mitochondrial damage, which was enhanced in combined treatments. Lapatinib alone also induced mild changes in cardiac function but this was not enhanced in the combined treatments. Trastuzumab did not enhance direct radiation or anthracycline toxicity of cardiomyocytes in vitro. Lapatinib did not enhance the risk of radiation or anthracycline-induced cardiac toxicity in mice up to 40 weeks after treatment, but mitochondrial damage was more severe after doxorubicin combined with lapatinib. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-013-2707-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-3824562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-38245622013-11-21 Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents Seemann, Ingar te Poele, Johannes A. M. Song, Ji-Ying Hoving, Saske Russell, Nicola S. Stewart, Fiona A. Breast Cancer Res Treat Preclinical Study In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 inhibition increased radiation or anthracycline-induced toxicity. In an in vitro study, human cardiomyocytes were treated with irradiation or doxorubicin, alone or in combination with trastuzumab, and evaluated for cell survival and growth. Groups of mice received 0 or 14 Gy to the heart, alone or in combination with lapatinib, or 3 × 4 mg/kg doxorubicin alone or in combination with lapatinib. Mice were evaluated 40 weeks after treatment for cardiac damage. Changes in cardiac function ((99m)Tc-Myoview gated SPECT) were related to histomorphology and microvascular damage. Radiation or doxorubicin-induced cardiomyocyte toxicity (in vitro) were not exacerbated by trastuzumab. Cardiac irradiation of mice decreased microvascular density (MVD) and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor), but these changes were not exacerbated by lapatinib. Inflammatory responses in the irradiated epicardium (CD45+ and F4/80+ cells) were significantly reduced in combination with lapatinib. Irradiation, doxorubicin, and lapatinib each induced cardiac fibrosis but this was not further enhanced when treatments were combined. At the ultra-structural level, both lapatinib and doxorubicin induced mitochondrial damage, which was enhanced in combined treatments. Lapatinib alone also induced mild changes in cardiac function but this was not enhanced in the combined treatments. Trastuzumab did not enhance direct radiation or anthracycline toxicity of cardiomyocytes in vitro. Lapatinib did not enhance the risk of radiation or anthracycline-induced cardiac toxicity in mice up to 40 weeks after treatment, but mitochondrial damage was more severe after doxorubicin combined with lapatinib. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-013-2707-7) contains supplementary material, which is available to authorized users. Springer US 2013-10-04 2013 /pmc/articles/PMC3824562/ /pubmed/24091769 http://dx.doi.org/10.1007/s10549-013-2707-7 Text en © The Author(s) 2013 https://creativecommons.org/licenses/by-nc/2.5/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Preclinical Study Seemann, Ingar te Poele, Johannes A. M. Song, Ji-Ying Hoving, Saske Russell, Nicola S. Stewart, Fiona A. Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title | Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title_full | Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title_fullStr | Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title_full_unstemmed | Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title_short | Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents |
title_sort | radiation- and anthracycline-induced cardiac toxicity and the influence of erbb2 blocking agents |
topic | Preclinical Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824562/ https://www.ncbi.nlm.nih.gov/pubmed/24091769 http://dx.doi.org/10.1007/s10549-013-2707-7 |
work_keys_str_mv | AT seemanningar radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents AT tepoelejohannesam radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents AT songjiying radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents AT hovingsaske radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents AT russellnicolas radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents AT stewartfionaa radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents |