Cargando…

Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents

In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these trea...

Descripción completa

Detalles Bibliográficos
Autores principales: Seemann, Ingar, te Poele, Johannes A. M., Song, Ji-Ying, Hoving, Saske, Russell, Nicola S., Stewart, Fiona A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824562/
https://www.ncbi.nlm.nih.gov/pubmed/24091769
http://dx.doi.org/10.1007/s10549-013-2707-7
_version_ 1782290712998445056
author Seemann, Ingar
te Poele, Johannes A. M.
Song, Ji-Ying
Hoving, Saske
Russell, Nicola S.
Stewart, Fiona A.
author_facet Seemann, Ingar
te Poele, Johannes A. M.
Song, Ji-Ying
Hoving, Saske
Russell, Nicola S.
Stewart, Fiona A.
author_sort Seemann, Ingar
collection PubMed
description In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 inhibition increased radiation or anthracycline-induced toxicity. In an in vitro study, human cardiomyocytes were treated with irradiation or doxorubicin, alone or in combination with trastuzumab, and evaluated for cell survival and growth. Groups of mice received 0 or 14 Gy to the heart, alone or in combination with lapatinib, or 3 × 4 mg/kg doxorubicin alone or in combination with lapatinib. Mice were evaluated 40 weeks after treatment for cardiac damage. Changes in cardiac function ((99m)Tc-Myoview gated SPECT) were related to histomorphology and microvascular damage. Radiation or doxorubicin-induced cardiomyocyte toxicity (in vitro) were not exacerbated by trastuzumab. Cardiac irradiation of mice decreased microvascular density (MVD) and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor), but these changes were not exacerbated by lapatinib. Inflammatory responses in the irradiated epicardium (CD45+ and F4/80+ cells) were significantly reduced in combination with lapatinib. Irradiation, doxorubicin, and lapatinib each induced cardiac fibrosis but this was not further enhanced when treatments were combined. At the ultra-structural level, both lapatinib and doxorubicin induced mitochondrial damage, which was enhanced in combined treatments. Lapatinib alone also induced mild changes in cardiac function but this was not enhanced in the combined treatments. Trastuzumab did not enhance direct radiation or anthracycline toxicity of cardiomyocytes in vitro. Lapatinib did not enhance the risk of radiation or anthracycline-induced cardiac toxicity in mice up to 40 weeks after treatment, but mitochondrial damage was more severe after doxorubicin combined with lapatinib. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-013-2707-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-3824562
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-38245622013-11-21 Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents Seemann, Ingar te Poele, Johannes A. M. Song, Ji-Ying Hoving, Saske Russell, Nicola S. Stewart, Fiona A. Breast Cancer Res Treat Preclinical Study In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 inhibition increased radiation or anthracycline-induced toxicity. In an in vitro study, human cardiomyocytes were treated with irradiation or doxorubicin, alone or in combination with trastuzumab, and evaluated for cell survival and growth. Groups of mice received 0 or 14 Gy to the heart, alone or in combination with lapatinib, or 3 × 4 mg/kg doxorubicin alone or in combination with lapatinib. Mice were evaluated 40 weeks after treatment for cardiac damage. Changes in cardiac function ((99m)Tc-Myoview gated SPECT) were related to histomorphology and microvascular damage. Radiation or doxorubicin-induced cardiomyocyte toxicity (in vitro) were not exacerbated by trastuzumab. Cardiac irradiation of mice decreased microvascular density (MVD) and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor), but these changes were not exacerbated by lapatinib. Inflammatory responses in the irradiated epicardium (CD45+ and F4/80+ cells) were significantly reduced in combination with lapatinib. Irradiation, doxorubicin, and lapatinib each induced cardiac fibrosis but this was not further enhanced when treatments were combined. At the ultra-structural level, both lapatinib and doxorubicin induced mitochondrial damage, which was enhanced in combined treatments. Lapatinib alone also induced mild changes in cardiac function but this was not enhanced in the combined treatments. Trastuzumab did not enhance direct radiation or anthracycline toxicity of cardiomyocytes in vitro. Lapatinib did not enhance the risk of radiation or anthracycline-induced cardiac toxicity in mice up to 40 weeks after treatment, but mitochondrial damage was more severe after doxorubicin combined with lapatinib. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-013-2707-7) contains supplementary material, which is available to authorized users. Springer US 2013-10-04 2013 /pmc/articles/PMC3824562/ /pubmed/24091769 http://dx.doi.org/10.1007/s10549-013-2707-7 Text en © The Author(s) 2013 https://creativecommons.org/licenses/by-nc/2.5/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Preclinical Study
Seemann, Ingar
te Poele, Johannes A. M.
Song, Ji-Ying
Hoving, Saske
Russell, Nicola S.
Stewart, Fiona A.
Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title_full Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title_fullStr Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title_full_unstemmed Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title_short Radiation- and anthracycline-induced cardiac toxicity and the influence of ErbB2 blocking agents
title_sort radiation- and anthracycline-induced cardiac toxicity and the influence of erbb2 blocking agents
topic Preclinical Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824562/
https://www.ncbi.nlm.nih.gov/pubmed/24091769
http://dx.doi.org/10.1007/s10549-013-2707-7
work_keys_str_mv AT seemanningar radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents
AT tepoelejohannesam radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents
AT songjiying radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents
AT hovingsaske radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents
AT russellnicolas radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents
AT stewartfionaa radiationandanthracyclineinducedcardiactoxicityandtheinfluenceoferbb2blockingagents